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Résumé 

La fibrose pulmonaire idiopathique canine (CIPF) est une pathologie qui atteint 

essentiellement les chiens âgés de la race du West Highland white terrier (WHWT). Il s’agit d’une 

maladie chronique caractérisée par un dépôt de collagène dans l’interstitium pulmonaire entrainant une 

insuffisance respiratoire progressive. A ce jour, l’étiologie de cette pathologie reste inconnue, le 

diagnostic est difficile, la pathophysiologie peu investiguée et le pronostic sombre. Les seuls 

traitements possibles actuellement sont symptômatiques et visent à améliorer la qualité de vie des 

chiens. La CIPF est régulièrement assimilée à la fibrose pulmonaire idiopathique (IPF) qui touche 

l’homme, bien que les deux pathologies ne soient pas strictement identiques. 

Ce travail a donc été entrepris dans le but d’améliorer les connaissances pathophysiologiques 

sur la CIPF et plus précisément celles relatives au microbiote pulmonaire (LM) et aux clusters de 

macrophages pulmonaires du liquide de lavage bronchoalvéolaire (BALF). En effet, les macrophages 

sont les principaux médiateurs des réactions immunitaires innées dirigées contre les bactéries dans le 

poumon. Ils sont capables de se polariser et de moduler leur caractéristiques phénotypiques 

(inflammatoires ou pro-fibrosantes) en fonction des modifications de leur environnement et 

notamment du LM. Récemment, des études sur l’IPF ont montré que le LM et son impact sur le 

système immunitaire et notamment les macrophages pourraient avoir un lien avec le développement, 

le maintien et l’exacerbation de la maladie donnant lieu à de nouvelles perspectives thérapeutiques. 

Dans un premier temps, nous avons décrit le LM chez les chiens sains et les principaux 

facteurs susceptibles de l’influencer. Une première étude a eu pour objectif de déterminer l’effet à 

court et moyen terme d’une antibiothérapie systémique sur le LM de beagles expérimentaux. En effet, 

les WHWTs atteints de CIPF présentés en consultation sont régulièrement traités à l’aide d’agents 

antimicrobiens. Nous avons établi que le LM avant antibiothérapie est relativement stable entre les 

individus et composé en majorité de 4 phyla, les Protéobactéries, les Firmicutes, les Bactéroïdetes et 

les Actinobactéries. L’administration orale d’amoxicilline-acide clavulanique pendant 10 jours 

modifie la diversité globale et la composition du LM, lesquelles reviennent à un état proche de l’état 

initial 16 jours après l’arrêt du traitement. L’effet de l’environnement et de la race sur le LM a ensuite 

été investigué en comparant des groupes de chiens adultes de races différentes (terriers-WHWTs-

beagles-brachycéphaliques-bergers) évoluant dans des environnements différents (domestique-

expérimental). Il a été montré que le LM varie de façon significative en fonction de l’environnement et 

que la race joue également un rôle dans la variation du LM bien que plus anecdotique. L’âge ne 

semble pas avoir d’impact sur le LM chez les chiens adultes. Un LM commun à tous les chiens sains 

dans chaque étude sur le LM a pu être identifié. Il contient au moins les genres Cutibacterium, 

Streptococcus, Acinetobacter et Pseudomonas. Dans une maladie pulmonaire aiguë, la bordetellose, 

nous avons pu montrer que les résultats obtenus par séquençage de l’ADN 16S (technique utilisée 

pour étudier le microbiote) sont corrélés aux résultats d’amplification en chaîne par polymérase et de 
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culture (techniques classiques d’identification des infections bactériennes dans le poumon). Le 

séquençage de l’ADN 16S est donc une technique fiable pour identifier les bactéries, surtout rares et 

difficilement cultivables, impliquées dans les maladies pulmonaires infectieuses canines. Une dysbiose 

a également été mise en évidence chez ces chiens caractérisée par une domination d’une ou deux 

bactéries, une diminution de la richesse et de la diversité et une augmentation de la charge bactérienne. 

Finalement, nous avons pu montrer qu’entre les WHWTs atteints de CIPF et les WHWTs sains, le LM 

est assez similaire avec une augmentation de 6 genres par rapport aux chiens sains d’autres races 

(Brochothrix, Curvibacter, Pseudarcicella, un genre de la famille des Flavobacteriaceae, Rhodoluna et 

Limnohabitans). Brochothrix, Pseudarcicella, Curvibacter et un genre de la famille des 

Flavobacteriaceae sont également, bien que non significativement, plus abondants chez les WHWTs 

malades par rapport aux sains. Nous en avons donc déduit que chez le WHWT, la présence d’un LM 

particulier semble davantage liée à la race qu’à la maladie et pourrait être un facteur intervenant dans 

la prédisposition du WHWT à la CIPF. 

Le séquençage des acides ribonucléiques messagers par cellule (scRNA-seq), une technique de 

séquençage à haut débit et non biaisée permettant l’analyse transcriptomique de cellules 

individuellement, a ensuite été validée dans le BALF de chiens sains. Quatorze clusters conservés 

entre les chiens ont pu être mis en évidence correspondant à 8 populations cellulaires : macrophages, 

lymphocytes, neutrophiles, cellules dendritiques, lymphocytes B, mastocytes, cellules épithéliales et 

cellules en division. Le scRNA-seq a alors été utilisé pour identifier des clusters de macrophages chez 

des WHWTs atteints de CIPF en comparaison de WHWTs sains. Les mêmes grandes populations 

cellulaires que dans l’étude précédente ont été identifiées. Les cellules identifiées comme étant des 

macrophages ont ensuite été sous-catégorisées en cinq clusters. Parmi ceux-ci, deux clusters, l’un 

identifiés comme des monocytes et l’autre comme des macrophages dérivés de monocytes, sont 

enrichis en gènes pro-fibrosants par rapport aux autres. Les gènes pro-fibrosants surexprimés dans ces 

2 clusters incluent CCL2, SPP1, FN1, CCL3, TIMP1, IL1RN, CXCL8 et CCL4, et SFTPC, CCL5, 

FN1, CXCL8, ATP11A et SPP1, respectivement. L’expression différentielle des gènes dans les 

monocytes entre les WHWTs malades et sains n’est pas différente, mais ce cluster contient 

significativement plus de cellules chez les WHWTs malades. Les macrophages dérivés de monocytes 

sont quant à eux enrichis en gènes pro-fibrosants chez les WHWTs malades par rapport aux sains mais 

aussi en gènes associés à l’angiogenèse et à la transition épithélio-mésenchymateuse, phénomènes 

intervenant dans la pathophysiologie de la fibrose. La présence de ces clusters de macrophages pro-

fibrosants contribue probablement au développement et au maintien de la CIPF chez le WHWT.  

Ce travail a donc permis de décrire le LM canin et ses modifications chez les WHWTs atteints 

de CIPF par rapport à d’autres conditions saines et pathologiques. L’utilisation du scRNA-seq dans le 

BALF, après validation, a permis d’identifier des clusters de macrophages pro-fibrosants chez les 

WHWTs atteints de CIPF. Les gènes pro-fibrosants identifiés pourraient servir dans le futur comme 

biomarqueur ou cible thérapeutique, ce qui offre de belles perspectives de recherche sur la CIPF. 
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Summary 

Canine idiopathic pulmonary fibrosis (CIPF) mainly affects middle-aged to old dogs from the 

West Highland white terrier (WHWT) breed. CIPF is a chronic disease characterized by collagen 

deposition in the pulmonary interstitium inducing progressive airway failure. Despite numerous 

investigations, the aetiology of the disease remains unknown, the diagnosis difficult, the 

pathophysiology misunderstood and the prognosis poor. Currently, there is no curative therapeutic 

option for that condition and only symptomatic treatments can be used to maintain a quality of life as 

good as possible for the dogs. CIPF is frequently equated with human idiopathic pulmonary fibrosis 

(IPF), although the diseases are not strictly identical. 

This project was therefore conducted in order to increase pathophysiological knowledges on 

CIPF and more precisely the ones related to the lung microbiota (LM) and bronchoalveolar lavage 

fluid (BALF) macrophage clusters. Indeed, macrophages are critical mediators of innate immune 

responses against bacteria in the lung. They are able to polarize and modulate their phenotypes 

(inflammatory or pro-fibrotic) to adjust to the microbial environmental conditions. Moreover, recently, 

studies about IPF have shown that the LM and its impact on the immune system, especially lung 

macrophages, could have a link with the development, the maintain and the exacerbation of the 

disease, providing perspectives for designing novel therapeutic strategies. 

Before assessing the LM in CIPF, we described the LM in healthy dogs and determined the 

principal factors potentially able to alter it in healthy conditions, including antimicrobial treatment, 

age, breed and living conditions. As WHWTs affected with CIPF are frequently referred under 

antimicrobial drug, we first investigated the short and long-time impact of such treatment on the LM 

in healthy experimental beagles. We showed that before drug administration, the LM is quite similar 

among dogs with the predominance of 4 phyla: Proteobacteria, Firmicutes, Bacteroidetes and 

Actinobacteria. A 10-days oral amoxicillin-clavulanic acid administration induces alteration of the 

global diversity and the composition of the LM. However, changes nearly disappear 16 days after 

discontinuation of the drug. The impact of the living conditions and the breed on the LM have then 

been assessed by comparing different dogs’ breeds (terriers, WHWTs, beagles, brachycephalic dogs 

and shepherds) living in different conditions (domestic or experimental). We showed that LM is 

significantly different depending of the living condition of dogs, while breed has a milder impact. In 

adult dogs, age doesn’t seem to have an impact on the LM. A core microbiota has been proposed by 

regrouping data of all published studies related to the LM in healthy dogs and is composed by at least 

Cutibacterium, Streptococcus, Acinetobacter and Pseudomonas genera. In acute respiratory diseases 

and particularly in dogs affected with Bordetella bronchiseptica, we showed that 16S rDNA 

sequencing (the technique used to assess LM) results correlate with results of classical techniques used 

to assess bacterial infection in the lung (i.e. polymerase chain reaction and culture). This suggests that 

the 16S rDNA sequencing is reliable for identifying bacteria involved in canine lung infectious 
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diseases, mainly when rare or slow growing bacteria are concerned. A dysbiosis of the LM is also 

described in the dogs affected with bordetellosis characterized by a domination of one or two bacteria, 

a reduction of the diversity and the richness, and a higher bacterial load compared with healthy aged-

matched dogs. Lastly, we showed that the LM between healthy WHWTs and WHWTs affected with 

CIPF is quite similar. Brochothrix, Curvibacter, Pseudarcicella, a genus belonging to 

Flavobacteriaceae family, Rhodoluna and Limnohabitans genera are increased in WHWTs either 

healthy or diseased compared with healthy dogs from other breeds. Brochothrix, Pseudarcicella, 

Curvibacter and a genus belonging to Flavobacteriaceae family are also more abundant in CIPF than 

in healthy WHWTs, however, not significantly. We therefore conclude that the presence of a specific 

LM in WHWTs compared to other breeds may be suspected to be one of the factors that can 

predispose that breed to CIPF.  

In the second part of the thesis, the use of the single-cell mRNA sequencing technique 

(scRNA-seq) was first validated in the BALF from healthy dogs. ScRNA-seq is an unbiased and high 

throughput tool that enables the transcriptomic identification of thousands of single cells at a time and 

that has never been used in dogs before. By using this technique, we found 14 conserved clusters in 

the BALF of healthy dogs corresponding to 8 different cell populations: macrophages, lymphocytes, 

neutrophils, dendritic cells, B cells, mast cells, epithelial cells and cells in division. The scRNA-seq 

was then used to identify macrophages clusters in WHWTs affected with CIPF compared with healthy 

WHWTs. In all WHWTs, the same cell populations as described in the previous study were identified. 

Five clusters of macrophages were found. Among them, two were enriched in pulmonary fibrosis 

processes compared with other clusters, a cluster of monocytes and a cluster of monocytes-derived 

macrophages. Pro-fibrotic genes overexpressed in monocytes and monocytes-derived macrophages 

included CCL2, SPP1, FN1, CCL3, TIMP1, IL1RN, CXCL8 and CCL4, and SFTPC, CCL5, FN1, 

CXCL8, ATP11A and SPP1, respectively. The differential gene expression in monocytes was not 

different between CIPF and healthy WHWTs. However, significantly more cells from this cluster were 

identified in CIPF dogs. Monocytes-derived macrophages were enriched in pulmonary fibrosis but 

also in angiogenesis and epithelial-mesenchymal transition processes in CIPF compared with healthy 

WHWTs. Four pro-fibrotic genes were overexpressed in CIPF compared with healthy WHWTs in that 

cluster including FN1, SPP1, CXCL8 and PLAU. The presence of those pro-fibrotic macrophage 

clusters in diseased WHWTs probably participates to the onset and/or the perpetuation of CIPF. 

In conclusion, this project allowed to better describe the LM in healthy dogs and its 

modifications in WHWTs affected with CIPF in comparison with other lung pathological conditions. 

The use of the scRNA-seq in dogs’ BALF, after validation revealed the presence of pro-fibrotic 

macrophage clusters in CIPF compared with healthy WHWTs. Overexpressed pro-fibrotic genes 

identified in CIPF WHWTs might be used as biomarkers or be targeted for therapeutic treatment, 

which offers good perspectives for future research about CIPF. 
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The present work will focus on a lung disease affecting middle-aged to old dogs from the 

West Highland white terrier (WHWT) breed called the canine idiopathic pulmonary fibrosis (CIPF). 

CIPF is considered as an interstitial lung disease (ILD). The ILD term was introduced in 1994 to 

design a heterogenous collection of diseases affecting the lung parenchyma and characterized by an 

initial alveolar inflammation extending to the interstitium and leading to diffuse fibrosis (MeSH 

PubMed). In pulmonary fibrosis cases, the lungs are progressively infiltrated with fibroblasts and 

collagen which results in an impairment of gas exchanges and a progressive respiratory failure (Mesh 

PubMed). 

Since 2011, the CIPF disease has been the subject of different studies including studies 

conducted by our team with the contribution of our Finnish veterinary partners from the University of 

Helsinki. Those works aimed at improving knowledges on CIPF in terms of clinical characterization, 

diagnosis and prognosis, but also of pathophysiology and identification of future possible therapeutic 

approaches, with the expectation that findings will be translatable to the human idiopathic pulmonary 

fibrosis (IPF), a comparable disease in man. However, at the present time, several aspects of CIPF 

remain to be explored.  

In the introduction, we will review what is currently known about CIPF in the WHWT breed 

in comparison with human findings on IPF, and what is still to be explored. In addition, in line with 

the objectives of the present work, part of the introduction will focus on the lung microbiota (LM), 

that will be studied in CIPF and another part on the single-cell mRNA sequencing (scRNA-seq) 

technique, a recent tool that is used in our work as well.   
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1. Canine idiopathic pulmonary fibrosis 

1.1. Generalities 

CIPF was properly described for the first time in 1999 by Corcoran and colleagues in a cohort 

of 29 WHWTs (Corcoran et al., 1999). Initially, the disease was characterized by a diffuse interstitial 

pattern on radiographs, and an increase of respiratory sounds with the presence of inspiratory crackles 

on lung auscultation (Corcoran et al., 1999). The term CIPF was first employed in 2005 by Johnson 

and colleagues due to similarity between the canine disease and the IPF disease described in human 

medicine. Indeed, the two pathologies correspond to specific form of chronic, progressive, fibrosing 

ILDs of unknown cause, occurring primarily in older patients or dogs and limited to the lungs. They 

are characterized by an accumulation of collagen in the interstitium leading to progressive dyspnoea, 

impaired gas exchange and death (ATS and ERS, 2000; Raghu et al., 2011; Raghu et al., 2018; 

Clercx, Fastrès and Roels, 2018; Lynch et al., 2018; Laurila and Rajamäki, 2020). CIPF has also been 

called chronic pulmonary disease (Corcoran et al., 1999; Schober and Baade, 2006), chronic 

idiopathic pulmonary fibrosis (Lobetti, Milner and Lane, 2001; Webb and Armstrong, 2002), 

idiopathic pulmonary fibrosis (Norris, Griffey and Walsh, 2002; Reinero, 2019a) and interstitial lung 

disease (Norris, Naydan and Wilson, 2005; Reinero and Cohn, 2007).  

In 2019, a large review classified ILDs in dogs and cats (Figure 1) in order to help in 

understanding more about aetiology, clinical features, pathogenesis and response to treatment 

(Reinero, 2019a; Reinero, 2019b). As in human, the term ILDs in dogs groups large and heterogenous 

non-infectious, non-neoplastic disorders characterized by various types of inflammation and fibrosis 

(Reinero, 2019a; Reinero, 2019b; Wakwaya and Brown, 2019; Farris, 2020). Among ILDs, CIPF is 

considered as a familial fibrotic ILD and is the best-described ILDs affecting dogs, probably because 

of its potential utility as spontaneous model for IPF in human (Reinero, 2019a; Reinero, 2019b). 

Indeed, the potential role of WHWTs as model for IPF has been considered as striking similarities in 

clinical presentations were observed between the two species (Williams and Roman, 2016; Tashiro et 

al., 2017; Barnes et al., 2019). With the improvement of CIPF characterization, differences between 

IPF and CIPF have been highlighted in thoracic imaging and histopathological findings indicating that 

the diseases are not identical (Syrjä et al., 2013; Clercx, Fastrès and Roels, 2018; Laurila and 

Rajamäki, 2020). Nevertheless, the spontaneity of the disease development in the dog as well as its 

submission to similar environmental living conditions as men support their superiority as model 

compared to those induced, in particular for testing mechanisms of action and effectiveness of novel 

therapies (Clercx, Fastrès and Roels, 2018; Barnes et al., 2019). 
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Figure 1. Classification of canine and feline interstitial lung diseases (ILDs). Canine idiopathic 

pulmonary fibrosis belongs to familial fibrotic ILDs. IIPs, idiopathic interstitial pneumonias; NSIP, 

non-specific interstitial pneumonia; LIP, lymphocytic interstitial pneumonitis; AIP, acute interstitial 

pneumonia; COP, cryptogenic organizing pneumonia; HP-like ILD, hypersensitivity-like interstitial 

lung disease; EP, eosinophilic pneumonia; PAP, pulmonary alveolar proteinosis; DAH, diffuse 

alveolar haemorrhage; LP, lipid/lipoid pneumonia; PH, pulmonary hyalinosis; LCH/PLCH, 

Langerhans’ cell histiocytosis/pulmonary Langerhans’ cell histiocytosis; PAM, pulmonary alveolar 

microlithiasis. Figure adapted from Reinero et al., 2019. 

1.2. Epidemiology and clinical presentation 

Currently, the prevalence and the incidence of CIPF are unknown. The difficulty to diagnose 

the disease, the presence of misdiagnosis and the lack of knowledges about WHWTs population 

contribute to the absence of epidemiologic data about the disease (Clercx, Fastrès and Roels, 2018; 

Laurila and Rajamäki, 2020).  

Age of the dogs at presentation ranges from 5 to 16 years (Heikkilä et al., 2011; Syrjä et al., 

2013; Roels et al., 2017a; Thierry et al., 2017; Holopainen et al., 2019; Roels et al., 2019), although 

rare younger CIPF cases have also been reported (Johnson et al., 2005; Schober and Baade, 2006). No 

sex predisposition is reported (Clercx, Fastrès and Roels, 2018; Laurila and Rajamäki, 2020). The 

disease develops slowly allowing adaptation to progressive respiratory impairment. Indeed, early stage 

of the disease are frequently confounded by the owners with normal ageing process and dogs are 

usually bright and alert at their presentation except for more severe cases (Corcoran et al., 1999; 
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Heikkila-Laurila and Rajamaki, 2014). The duration of clinical signs prior diagnosis varies between 

around 1 month and 4 years with great individual variation. As in human IPF, common clinical signs 

reported include either exercise intolerance or chronic cough or both. Other classical clinical signs 

include restrictive dyspnoea, tachypnoea, cyanosis, syncope, gagging and panting (Heikkila-Laurila 

and Rajamaki, 2014; Roel et al., 2017; Thierry et al., 2017; Holopainen et al., 2019; Kishaba, 2019b; 

Roels et al., 2019). 

At clinical examination, presence of bilateral, inspiratory crackles is a characteristic finding on 

lung auscultation, which is also typically reported in IPF (Clercx, Fastrès and Roels, 2018; Raghu et 

al., 2018; Sgalla et al., 2018; Hochhegger et al., 2019; Laurila and Rajamäki, 2020). Moreover, in 

some dogs, crackles can even be heard without stethoscope when the dog is breathing with an open 

mouth (Clercx, Fastrès and Roels, 2018; Laurila and Rajamäki, 2020). Other common clinical 

examination findings include positive laryngo-tracheal reflex, tachypnoea and dyspnoea. In severely 

affected dogs, cyanosis, respiratory distress, and an abdominal breathing pattern are commonly present 

(Corcoran et al., 1999; Heikkila-Laurila and Rajamaki, 2014). Some dogs develop complications 

secondary to CIPF such as secondary respiratory tract infection or arterial pulmonary hypertension 

(PH). In this case, a low-grade, right-sided, and systolic murmur can be heard because of tricuspid 

reflux due to PH (Heikkila-Laurila and Rajamaki, 2014). The presence of PH is also documented in 

IPF patients and is associated with a decrease in survival, an increase risk of death and a reduce quality 

of life (QOL) (Raghu et al., 2015a; Torrisi et al., 2018; Alfaro and Cordeiro, 2020). 

1.3. Aetiology and risk factors 

The aetiology of CIPF is still unknown. As the disease principally occurs in WHWTs, a 

genetic predisposition is strongly suspected (Heikkila-Laurila and Rajamaki, 2014). Indeed, a genetic 

relationship with another dog affected with CIPF was associated with an increased risk to develop 

CIPF (Roels et al., 2018). However, not all old WHWTs are affected with CIPF, which suggests the 

involvement of other factors in the disease development (Clercx, Fastrès and Roels, 2018; Laurila and 

Rajamäki, 2020). Anecdotal pulmonary fibrosis cases have also been described in other terrier breeds, 

such as the American Staffordshire terrier, the Bull terrier, the Cairn terrier and the Scottish terrier 

(Corcoran et al., 1999; Lobetti, Milner and Lane, 2001; Norris, Griffey and Walsh, 2002; Johnson et 

al., 2005; Krafft et al., 2013). However, it is unknown if the disease in those breeds is exactly the 

same as in the WHWT breed. In human, several genetic mutations have been clearly associated with 

an increased risk to develop IPF and include essentially mutations in the mucin 5B gene, surfactant 

protein genes and telomerase genes (Wakwaya and Brown, 2019). Despite investigations, none of 

these mutations have consistently been associated with CIPF in WHWTs (Clercx, Fastrès and Roels, 

2018; Laurila and Rajamäki, 2020). Recently, a genome-wide association study identified genetic 

variants associated with CIPF in the WHWT breed, located in a region encompassing the cleavage and 
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polyadenylation specific factor 7 (CPFS7) and the succinate dehydrogenase complex assembly factor 

2 (SDHAF2) genes (Piras et al., 2020). These two overlapping genes include 15 and 8 informative 

single nucleotide polymorphisms, respectively. However, in this study, the disease was self-reported 

by the owners which raises questions about CIPF diagnosis as no clinical confirmation of CIPF, 

knowledge of whether they had progressive lung fibrosis and information about lifespan were known 

by the authors (Piras et al., 2020).  Further studies are required to validate those results. Another 

genome-wide association analysis was also recently performed in WHWTs affected with atopic 

dermatitis, a heritable disease condition affecting between 6.5 and 52% of WHWTs (O' Neill et al., 

2019; Favrot et al., 2020; Rostaher et al., 2020). A missense variant in the gene coding for the 

coagulation factor II thrombin receptor (F2R) that segregated between healthy and diseased WHWTs 

was identified (Agler et al., 2019). The activation of this receptor has been shown to play a role 

especially in wound healing, inflammation and fibrosis and may be at the origin to the increased local 

chemokine C-C motif ligand 2 (CCL2) release and epithelial-mesenchymal transition (EMT) process 

occurring in CIPF (Mercer and Chambers, 2013; Wygrecka et al., 2013; Ungefroren et al., 

2018). However, to our knowledge, there is no study assessing the link between atopic dermatitis and 

CIPF and between the activation of this receptor and CIPF in the WHWT breed.  

Several environmental factors have also been associated with CIPF such as living in an old 

house, absence of a ventilation system and frequent grooming in dedicated facilities (Roels et al., 

2018).  

Certain infectious causes described in lung fibrotic diseases in other species have also been 

investigated in CIPF-affected WHWTs. In men, horses, and rodents, an association between 

pulmonary fibrotic pathologies and gamma herpesvirus infection has been identified (Williams, 2014). 

However, gamma herpesviruses infection in CIPF WHWTs is unlikely as lung and blood polymerase 

chain reaction (PCR) failed to identify viral desoxyribonucleic acid (DNA) in diseased dogs (Roels et 

al., 2016). A recent study also screened for fungal DNA in the lungs of CIPF and healthy WHWTs, 

using a pan-fungal PCR test targeting the internal transcribed spacer region conserved in the fungal 

reign (Roels et al., 2017b). In the same study, serum samples were also tested for precipitins from 

common environmental fungi using electrosyneresis. Results suggest that fungal infection is not 

associated with CIPF while a lung sensitization to fungal allergens might be involved in the 

pathogenesis of the disease as an increased prevalence of environmental fungal exposure in CIPF dogs 

was found compared with controls (Roels et al., 2017b). Infection by bacteria has been associated with 

an increased risk of IPF development in human (Molyneaux and Maher, 2013; Williams, 2014; Fastrès 

et al., 2017a; Olson et al., 2018; Sgalla et al., 2018). Indeed, it is suspected that the presence of certain 

bacteria by causing epithelial alveolar injury on their own or through inflammatory and pro-fibrotic 

cascades activation could be associated with disease development and may also drive disease 
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progression or acute exacerbation (AE) (Molyneaux and Maher, 2013; Fastrès et al., 2017a; Olson et 

al., 2018; Sgalla et al., 2018). Recently, the development of modern microbiological techniques has 

allowed the study of the LM as developed below. The exact role of the LM as risk factor or in the 

pathophysiology of IPF remains unclear. However, its involvement in the disease is supported by the 

findings that immunosuppressive therapies are associated with an increased risk of death and 

hospitalization and antibiotics administration decreases mortality rate, increases QOL and reduces 

respiratory infections (Fastrès et al., 2017a). The role of lung bacteria as a risk factor or in the 

development and progression of CIPF in WHWTs has not yet been assessed and represents a 

promising field of investigation. 

Microaspirations secondary to gastroesophageal reflux (GER) are also suggested to be 

associated with CIPF and could be one of the factors which could predispose WHWTs to the disease. 

Indeed, increased total bile acid bronchoalveolar lavage fluid (BALF) concentrations were found in 

CIPF and healthy WHWTs compared to healthy dogs of other breeds (Määttä et al., 2018). In human, 

GER and secondary microaspirations have been reported in 0 to 94% of IPF patients (Raghu et al., 

2015a). Microaspirations are suspected to induce repetitive alveolar damages in susceptible patients at 

the origin of an aberrant wound healing leading to lung fibrosis (Torrisi et al., 2018; Bédard Méthot, 

Leblanc and Lacasse, 2019; Alfaro and Cordeiro, 2020). However, they can also appear secondary to 

the reduce lung compliance induced by IPF leading to an increase thoracic pressure and to further 

GER (Alfaro and Cordeiro, 2020).  

1.4. Pathogenesis 

As in human IPF, CIPF pathophysiology remains elusive and a lot of mechanisms are still to 

be discovered with the willing to identify new therapeutic targets.  

In IPF, it is now widely assumed that repetitive alveolar epithelial injuries in susceptible 

people (aged people with specific genetic susceptibility and environmental exposures) act as the first 

driver of an abnormal wound healing process leading ultimately to the development and the 

sustainment of lung fibrosis (Figure 2) (Richeldi, Collard and Jones, 2017; Sgalla et al., 2018; Selman 

and Pardo, 2020). The presence of fibroblastic foci typically located next to hyperplastic or apoptotic 

alveolar epithelial cells supports that hypothesis (Richeldi, Collard and Jones, 2017). Secondary to 

epithelial damages, lung epithelial cells develop aberrant regenerative behaviour and produce and 

release high amount of inflammatory and fibrogenic cytokines and growth factors such as TNF-α 

(tumour necrosis factor alpha), transforming growth factor-β1 (TGF-β1), platelet derived growth 

factor (PDGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF) and CCL2. 

Those molecules create and maintain an environment supportive of exaggerated fibroblasts migration, 

proliferation and differentiation into myofibroblasts which contribute to excessive extracellular matrix 
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(ECM) and collagen deposition and destroy normal lung architecture in particular via the formation of 

fibroblastic foci (O’Dwyer, Ashley and Moore, 2016; Richeldi, Collard and Jones, 2017; Sgalla et al., 

2018; Glass et al., 2020; Selman and Pardo, 2020). Epithelial damages also activate the coagulation 

cascade which reduces the degradation of ECM, also resulting in a profibrotic effect, and inducing 

differentiation of fibroblasts into myofibroblasts (Sgalla et al., 2018). Finally, the inflammation may 

also play an important role in IPF. Inflammatory cells produce cytokines that can stimulate an 

inflammatory response, but also induce alveolar damages and participate to the transition to a 

reparative environment (Sgalla et al., 2018).  

Figure 2. Schematic view of IPF pathogenesis. Repeated injuries over time lead to 

maladaptive repair process, characterized by type 2 pneumocytes apoptosis, proliferation and 

epithelium-mesenchymal cross-talk (a) and following fibroblasts, myofibroblasts proliferation and 

accumulation of extracellular matrix (b).CCL2, chemokine C-C motif ligand 2; CXCL12, C-X-C motif 

chemokine ligand 12; FGF, fibroblast growth factor; PAI-1, plasminogen activator inhibitor 1; PAI-2, 

plasminogen activator inhibitor 2; PDGF, platelet-derived growth factor; TGF-β1, Transforming 

growth factor-β1; TNF-α, tumour necrosis factor-alpha; VEGF, vascular endothelial growth factor 

(Sgalla et al., 2018). 

Among all pro-fibrotic molecules involved in IPF, it is now well recognized that TGF-β1 is a 

key-molecule conducting to the disease (Chanda et al., 2019). Its main roles in IPF development 

include the promotion of epithelial cell apoptosis, migration and EMT, the production of other growth 

factors and profibrotic and proangiogenic mediators, the recruitment of fibrocytes and the activation, 

proliferation and differentiation of fibroblasts into myofibroblasts (Grimminger, Günther and 

Vancheri, 2015; Sgalla et al., 2018). The role of TGF-β1 as a key mediator of fibrosis has also been 
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investigated in CIPF in two studies (Krafft et al., 2014; Lilja-Maula et al., 2014). The alteration of 

TGF-β1 signalling pathways found in CIPF dogs are resumed in Figure 3. The first study investigated 

by immunohistochemistry TGF-β1 signalling activity by targeting phosphorylated signalling protein 

Smad2 (P-Smad2), and regulation by targeting ECM regulatory proteins including latent TGF-β1 

binding proteins (LTBPs) and fibrillin-2 (Lilja-Maula et al., 2014). An increased P-Smad2 

immunoreactivity predominantly localized in the altered alveolar epithelium was found in WHWTs 

affected with CIPF compared to healthy WHWTs. LTBP1 immunoreactivity was also increased in 

diseased compared to healthy dogs in peribronchial, perivascular, as well as altered alveolar 

epithelium area. No significant difference in fibrillin-2 immunoreactivity was reported between 

WHWTs affected with CIPF and healthy WHWTs (Lilja-Maula et al., 2014). In addition to the 

assessment of some TGF-β1 signalling (P-Smad2/3) and regulatory proteins (LTBP-1, -2 and -4 and 

Smad7), the second study also investigated in diseased compared with healthy dogs serum 

concentration of TGF-β1, and lung expression and localization of TGF-β1, TGF-β receptor I (TBRI), 

and TGF-β1 activation proteins including the integrins ανβ6 (ITGB6) and ανβ8 (ITGB8) and the 

thrombospondin-1 (THBS1) (Krafft et al., 2014). Authors found that TGF-β1 circulated in higher 

concentration in predisposed breeds. TGF-β1 was not overexpressed in CIPF compared to healthy 

dogs, while an increased TGF-β1 protein immunoreactivity was found in CIPF lungs with intense 

interstitial labelling. TBRI and P-Smad2/3 immunoreactivity was more observed in CIPF dogs in 

alveolar epithelial cells and particularly hyperplastic type II pneumocytes (PCIIs). The expression of 

LTBP4 as well as ITGB8 was decreased in CIPF compared to healthy dogs, while THBS1 expression 

was increased. Finally, the expression of the inhibitory Smad7 protein did not differ between healthy 

and diseased dogs (Krafft et al., 2014). All that results suggested that altered epithelial cells may have 

a central role in the pathophysiology of CIPF (Krafft et al., 2014; Lilja-Maula et al., 2014). In 

addition, modifications of activation, regulation and storage pathways of TGF-β1 might probably be 

involved in the pathophysiological mechanisms leading to CIPF (Krafft et al., 2014). 

The involvement of other pro-fibrotic molecules like activins A and B have also been studied 

in CIPF dogs (Lilja-Maula et al., 2015). Activins are cytokines belonging to the TGF-β superfamily 

that can bind TBR and drive Smad phosphorylation cascade (Derynck and Budi, 2019). Activin B was 

detected in BALF of WHWT affected with CIPF by western blot analysis, especially in WHWTs with 

AE of the disease. The molecule was also strongly expressed in altered alveolar epithelium in the 

lungs of WHWTs with CIPF compared to healthy WHWTs. Those data suggest that Activin B could 

to play a role in fibrosis and might act as a marker of alveolar epithelial damage (Lilja-Maula et al., 

2015). 

In human, altered haemostatic, fibrinolytic and inflammatory profiles have been associated 

with the exuberant wound process (Sgalla et al., 2018). However, no clear evidence of an altered 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/activins
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systemic haemostatic, fibrinolytic or inflammatory state was found in WHWTs affected with CIPF 

compared with healthy dogs. Nevertheless, higher platelet counts and fibrinogen concentrations were 

found in WHWTs compared with other breeds which may be a predisposing factor for CIPF or simply 

reflects biological variation in the breed (Roels et al., 2019). 

Figure 3. Transforming growth factor-β1 (TGF-β1) pathways investigated in canine idiopathic 

pulmonary fibrosis (Krafft et al., 2014; L. Lilja-Maula et al., 2014). TGF-β1 is stored linked to the 

latency-associated peptide (LAP) as a latent form and is bound to either component of the 

extracellular matrix (ECM) or fibrillin-2 by latent TGF-β1 binding proteins (LTBPs). After activation 

of TGF-β1 notably mediated by integrins such as integrins ανβ6 (ITGB6) and ανβ8 (ITGB8) or 

thrombospondin-1 (THBS1), TGF-β1 binds its receptor the TGF-β receptor II (TBRII). TGF-β1 

binding promotes the formation and stabilization of receptor complexes formed by two TGF-β 

receptors I (TBRIs) and two TBRIIs. Upon receptors activation, effectors Smads are phosphorylated 

and translocate into the nucleus to repress or activate the transcription of TGF-β1 dependent 

molecules. The phosphorylation of effector Smads is inhibited by Smad7 (Derynck and Budi, 2019). *, 

immunohistochemistry findings; **, quantitative reverse transcription polymerase chain reaction 

findings; ↑, significantly increased compared with healthy dogs; ↓, significantly decreased compared 

with healthy dogs; →, no significant difference compared with healthy dogs. 

Recently, lung bacterial communities and their interactions with immune cells were suspected 

to be involved in IPF pathogenesis. Indeed, genetic mutations in genes involved in immune response 

found in IPF leads to reduced bacterial clearance and altered immune response (Glass et al., 2020). 

Presence of specific bacteria and increase bacterial burden was associated with worse IPF outcome 
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and disease progression, supporting the role for bacteria in IPF pathogenesis (Fastrès et al., 2017a; 

Glass et al., 2020). By themselves, bacteria can cause epithelial damages but, they can also activate 

immune cells which in turn can induce epithelial injuries by producing pro-inflammatory molecules. 

Moreover, during the course of the disease, the presence of specific bacteria can contribute to maintain 

alveolar inflammation and to induce AE of the disease (Fastrès et al., 2017a; Molyneaux et al., 2017a; 

Spagnolo et al., 2019). Primarily or secondary to the alteration of the LM, an accumulation of active 

pro-fibrotic macrophages was confirmed in the lungs of IPF patients (O’Dwyer, Ashley and Moore, 

2016; Heukels et al., 2019). Products secreted by those macrophages notably include TGF-β,  FGF, 

PDGF, insulin-like growth factor 1 (IGF1) and VEGF (Desai et al., 2018; Heukels et al., 2019). 

CCL18 (C-C motif chemokine ligand 18) most probably also produced by those pro-fibrotic 

macrophages and increased in BALF of IPF patients activates fibroblasts producing collagen and 

recruits T-cells that in turn can stimulate macrophages in a positive feed-back loop to produce CCL18 

(Heukels et al., 2019). Pro-inflammatory macrophages producing cytokines such as TNFα, IL-1 

(interleukin 1), and IL-6 (interleukin 6) have also been described in IPF, and are suspected to cause 

alveolar epithelium injury and to maintain tissue inflammation (Heukels et al., 2019). Monocytes 

attracted in the lung via the CCR2-CCL2 axis also play a role in IPF by producing pro-inflammatory 

cytokines, including IFN-α (interferon alpha), CCL3 (C-C motif chemokine ligand 3) and CCL4 (C-C 

motif chemokine ligand 4), which promote myofibroblasts differentiation. In the lung, monocytes 

progressively differentiate into macrophages or fibrocytes able to promote fibrosis (O’Dwyer, Ashley 

and Moore, 2016; Heukels et al., 2019). Such changes in lung microbial communities and 

macrophages polarization have not yet been investigated in WHWTs affected with CIPF.   

1.5. Diagnostic work up 

The diagnosis of CIPF is based on clinical findings, diagnostic imaging, and the exclusion of 

other cardiac and respiratory diseases able to mimic clinical signs of CIPF (Clercx, Fastrès and Roels, 

2018; Laurila and Rajamäki, 2020). A strong suspicion of CIPF can be achieved after a complete 

work-up including history assessment, clinical examination, complete blood work, 6-minute walking 

test (6MWT), echocardiography, thoracic imaging, bronchoscopy and BALF analysis, although a 

definite diagnosis can only be obtained by histopathological examination (Clercx, Fastrès and Roels, 

2018; Laurila and Rajamäki, 2020). 

In IPF, clinical practice guidelines to diagnose the disease has been published in order to guide 

clinicians and consist in (1) the exclusion of other known causes of ILD and either (2) the presence of 

usual interstitial pneumonia (UIP) pattern on thoracic high resolution computed tomography (HRCT) 

or (3) the specific combination of thoracic HRCT and histopathology patterns in patients with lung 

biopsies (Raghu et al., 2011; Raghu et al., 2018). However, the diagnostic of IPF as in CIPF remains 

quite challenging. The specific clinical challenges are to differentiate IPF from connective lung 
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diseases (CLDs) which develop secondary to immune disorders, chronic hypersensitivity pneumonitis 

(HP) and familial pulmonary fibrosis (Lynch et al., 2018).  

1.5.1. 6-minute walking test 

The 6MWT consists in the assessment of the distance covered by the dog over 6 minutes of 

time (Clercx, Fastrès and Roels, 2018; Laurila and Rajamäki, 2020). It is a well-tolerated and non-

invasive technique used for evaluation of exercise intolerance. The 6MWT is, with the arterial blood 

gas assessment, one of the 2 cardiopulmonary function tests performed in WHWTs affected with CIPF 

(Clercx, Fastrès and Roels, 2018; Laurila and Rajamäki, 2020). Indeed, the 6-minute walked distance 

(6MWD) was shown to be moderately correlated (Kendall′s tau-b = 0.69) with the arterial partial 

pressure in oxygen (PaO2), although being only statistically significant at 10% (Lilja-Maula et al., 

2014). In numerous studies, the test was performed and a significantly reduced distance was reported 

in WHWTs affected with CIPF compared with healthy WHWTs (Clercx, Fastrès and Roels, 2018; 

Laurila and Rajamäki, 2020). Moreover, repetitive assessment of the 6MWD can be used to monitor 

changes in exercise intolerance in WHWTs with CIPF and, therefore, the progression of the disease 

(Lilja-Maula et al., 2014).  

As in dogs, an oxygen desaturation during 6MWT and a reduction in exercise performance is 

classically observed in IPF patients (Hochhegger et al., 2019; Kishaba, 2019b). Moreover, the 6MWT 

alone or in combination with other parameters can be used in human IPF to predict the severity and the 

prognosis of the disease (Hochhegger et al., 2019; Kishaba, 2019b; Somogyi et al., 2019).  

1.5.2. Arterial blood gas analysis 

Arterial blood gas analysis is another classical cardiopulmonary function test used in CIPF 

WHWTs (Clercx, Fastrès and Roels, 2018; Laurila and Rajamäki, 2020). It is considered as the gold 

standard test for evaluating oxygenation and ventilation (Balakrishnan and Tong, 2020). In CIPF and 

IPF, it provides information about disease severity and disease progression in case of repeated 

measures (Lilja-Maula et al., 2014; Hochhegger et al., 2019; Kishaba, 2019b; Somogyi et al., 2019). 

Moderate (80-60 mmHg) to severe (< 60mmHg) hypoxemia and increased alveolar-arterial oxygen 

gradient have been reported in more than 90% of the dogs suffering from CIPF (Clercx, Fastrès and 

Roels, 2018; Laurila and Rajamäki, 2020). Hypoxemia in CIPF probably does not only result from 

alveolo-capillary diffusion impairment due to thickened alveolo-capillary membrane. Indeed, in 

human IPF, the main reason for hypoxemia was ventilation–perfusion mismatch (Plantier et al., 2018). 

Change in arterial partial pressure of carbon dioxide is not reported in CIPF cases (Heikkilä et al., 

2011; Roels et al., 2017a; Holopainen et al., 2019).  
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1.5.3. Blood work 

Haematology and biochemistry analyses are unremarkable in WHWTs affected with CIPF and 

are commonly performed only to exclude other diseases (Clercx, Fastrès and Roels, 2018; Laurila and 

Rajamäki, 2020). As in human IPF, polycythaemia is not associated with the disease in dogs (Crystal 

et al., 1976; Laurila and Rajamäki, 2020). Only serum concentration of alkaline phosphatase (ALP) 

and platelet count are frequently higher than reference ranges which seems to be breed-related as those 

values did not differ between healthy and diseased WHWTs (Heikkila-Laurila and Rajamaki, 2014; 

Roels et al., 2015a; Thierry et al., 2017; Roels et al., 2019). The increased ALP activity in WHWTs 

could possibly be attributed to benign subclinical hyperadrenocorticism as suspected in Scottish 

terriers (Zimmerman et al., 2010). 

In IPF, serological testing for C-reactive protein, erythrocyte sedimentation rate, rheumatoid 

factor, anti-cyclic citrullinated peptide, myositis panel, and anti-nuclear antibody can be helpful to 

differentiate IPF from CLD, although slightly positive results for rheumatoid factor, anti-nuclear 

antibody and cyclic citrullinated peptide have been demonstrated in 29% of IPF patients without 

clinical significance (Hochhegger et al., 2019; Wakwaya and Brown, 2019). There is no evidence for 

or against the dosage of serum precipitins for the screening of HP (Wakwaya and Brown, 2019). 

Finally, the screening for other forms of ILDs using diagnostic blood biomarkers is not recommended 

(Raghu et al., 2018; Wakwaya and Brown, 2019). 

1.5.4. Bronchoscopy and bronchoalveolar lavage fluid analysis 

Bronchoscopic results described in WHWTs affected with CIPF are non specific. Because 

bronchoscopy requires general anaesthesia, which could be tricky in some severe cases, the 

performance of the test should be discussed in term of benefits versus risks. Bronchoscopy should be 

performed, especially when there is discrepancy between clinical data and thoracic HRCT findings or 

suspicion of infection or other disease process (Clercx, Fastrès and Roels, 2018; Laurila and Rajamäki, 

2020).  

Findings reported in diseased dogs include tracheal collapse, bronchial mucosal irregularity, 

mild to moderate amount of bronchial mucus, dynamic airway collapse, bronchiectasis and 

bronchomalacia. Bronchial mucosal irregularity and tracheal collapse are also described in healthy 

WHWTs and could be aged-related changes (Heikkila-Laurila and Rajamaki, 2014). 

Analyses of BALF commonly indicate an increase of the total cell count (TCC) related to an 

increased in macrophages, neutrophils and mast cells. BALF bacterial culture is rarely positive 

(Heikkila-Laurila and Rajamaki, 2014). 
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In IPF, BALF analysis can be used to exclude alternative diagnoses (Raghu et al., 2018; 

Wakwaya and Brown, 2019). However, giving the wide range of cell proportions and the low number 

of studies and patients included in the studies comparing BALF analyses in patient with IPF and other 

fibrosing ILDs, the usefulness of BALF to discriminate ILDs is unclear. In addition, the BALF 

procedure remains invasive for the patient, has some risk of complications and needs to be carefully 

considered in term of benefits (Raghu et al., 2018). 

1.5.5. Diagnostic imaging 

1.5.5.1. Echocardiography  

Echocardiography is essential to exclude primarily cardiac disease which can mimic clinical 

signs of CIPF, but also to look after secondary PH which can affect up to 60% of CIPF WHWTs at 

diagnosis (Clercx, Fastrès and Roels, 2018; Laurila and Rajamäki, 2020; Roels et al., 2021). The 

prevalence of PH in IPF patients is also high ranging from 31 to 46% and increases with the disease 

severity (Raghu et al., 2015a; Torrisi et al., 2018; Somogyi et al., 2019; Alfaro and Cordeiro, 2020). 

In IPF, PH is associated with a decrease in survival, an increase risk of death and a reduce QOL 

(Raghu et al., 2015a; Torrisi et al., 2018). In CIPF, although the presence of moderate to severe PH 

at diagnosis doesn’t seem to be associated with a shorter survival , detecting PH is important for 

making therapeutic decisions as treatment can improve clinical signs and QOL of the dogs (Clercx, 

Fastrès and Roels, 2018; Johnson and Stern, 2020; Laurila and Rajamäki, 2020; Roels et al., 2021).  

At echocardiography, PH is classically assessed in dogs by measuring the peak velocity of the 

tricuspid regurgitation jet. Other echocardiographic measures can aid for PH assessment including 

assessment of the size of the right ventricle and the right atrium, the systolic flattening of the 

interventricular septum, the pulmonary artery diameter to aortic diameter ratio, the pulmonary artery 

flow profile, the caudal vena cava size, the acceleration time to ejection time ratio of the pulmonary 

artery flow, the right pulmonary artery distensibility index and the right pulmonary vein to pulmonary 

artery ratio (Schober and Baade, 2006; Visser et al., 2016; Reinero et al., 2020; Roels et al., 2021).  

1.5.5.2. Thoracic radiography 

As in IPF, thoracic radiography is neither specific nor sensitive for CIPF diagnosis (Heikkila-

Laurila and Rajamaki, 2014; Wallis and Spinks, 2015). It is more useful to exclude other pulmonary 

diseases such as neoplasia for example (Heikkila-Laurila and Rajamaki, 2014). Moreover, thoracic 

radiography findings cannot be used to assess disease progression  in CIPF dogs (Laurila and 

Rajamäki, 2020).  

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/pulmonary-vein
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The most common radiographic finding identified in WHWTs affected with CIPF is a 

moderate to severe generalized bronchointerstitial pattern which can also be identified in control dogs, 

although in less severe proportion (Johnson et al., 2005; Corcoran et al., 2011; Heikkilä et al., 2011; 

Heikkila-Laurila and Rajamaki, 2014; Thierry et al., 2017).  Right-side cardiomegaly and pulmonary 

arterial enlargement can also be visualized in WHWTs affected with CIPF, in case of secondary PH 

(Johnson et al., 2005; Heikkila-Laurila and Rajamaki, 2014). Bronchial pattern and patchy alveolar 

opacities with indistinct margins are also reported in addition to interstitial infiltrates (Johnson et al., 

2005; Heikkila-Laurila and Rajamaki, 2014). Representative examples of radiographic changes in 

CIPF dogs are shown in Figure 4.  

Figure 4. Representative thoracic radiographies obtained from a 13-year-old West Highland 

white terrier affected by canine idiopathic pulmonary fibrosis. (A) right lateral view and (B) ventro-

dorsal view. A diffuse, severe unstructured interstitial pattern, a moderate bronchial to peribronchial 

pattern and a small thoracic volume are observed on both views which are consistent with pulmonary 

fibrosis considering the breed of the patient. The right heart and the liver are enlarged. A large soft-

tissue band (black arrow) is superimposed to the dorsal aspect of the cervical trachea and is 

compatible with tracheal flaccidity. 

1.5.5.3. Thoracic high resolution computed tomography  

Thoracic HRCT is considered as essential for the diagnosis of IPF in men and CIPF in dogs, as 

it allows the investigation of the lung in a better spatial resolution than radiography (Heikkilä et al., 

2011; Heikkila-Laurila and Rajamaki, 2014; Lynch et al., 2018). Moreover, in CIPF, a positive and a 

negative correlation between the severity of pulmonary HRCT findings and either clinical signs or 

survival time after diagnosis are reported, respectively. Those findings support the benefit of thoracic 
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HRCT to provide information about the characterization and the prognosis of the disease (Thierry et 

al., 2017; Holopainen et al., 2019).   

In CIPF dogs, thoracic HRCT findings have been described in several studies (Johnson et al., 

2005; Corcoran et al., 2011; Heikkilä et al., 2011; Roels et al., 2017a; Thierry et al., 2017; Holopainen 

et al., 2019). Moderate to severe ground glass opacity pattern (GGO) defined as hazy increased 

attenuation with preservation of the bronchial and vascular margins are recorded in all WHWTs 

affected with CIPF (Johnson et al., 2005; Corcoran et al., 2011; Heikkilä et al., 2011; Roels et al., 

2017a; Thierry et al., 2017; Holopainen et al., 2019). The GGO pattern is found in all stages of the 

disease (mild, moderate and severe) but became more diffuse as the clinical stage of the disease 

worsened (Johnson et al., 2005; Heikkilä et al., 2011; Thierry et al., 2017). Parenchymal bands and 

patchwork of regions of differing attenuation called mosaic attenuation pattern (Corcoran et al., 2011; 

Heikkilä et al., 2011; Thierry et al., 2017; Holopainen et al., 2019), subpleural lines (Corcoran et al., 

2011; Heikkilä et al., 2011; Holopainen et al., 2019), subpleural and peribronchovascular interstitial 

thickening (Corcoran et al., 2011; Heikkilä et al., 2011), consolidations (Heikkilä et al., 2011; 

Holopainen et al., 2019) and nodules (Roels et al., 2017a; Thierry et al., 2017) are also described and 

associated with moderate and severe stages of the disease (Johnson et al., 2005; Thierry et al., 2017). 

Finally, traction bronchiectasis defined as irregular bronchial dilatation with abnormal surrounding 

parenchyma  (Corcoran et al., 2011; Heikkilä et al., 2011; Thierry et al., 2017; Holopainen et al., 

2019) and honeycombing (subpleural cystic airspaces) (Corcoran et al., 2011; Heikkilä et al., 2011; 

Thierry et al., 2017) are only seen in severe cases and are associated with severe stages of the disease 

(Johnson et al., 2005; Thierry et al., 2017). 

Figure 5. Representative transverse image of 

thoracic high resolution computed tomography 

(HRCT) in a lung window in inspiratory phase, 

obtained from a 7-year-old West Highland white 

terrier affected by canine idiopathic pulmonary 

fibrosis. A diffuse ground glass opacity is 

observed. Multiple well-defined hypo-attenuating 

areas (black stars) compared to the surrounding 

parenchyma are present, mostly in the right lung 

which defines a mosaic attenuation pattern. 

Traction bronchiectasis is visible in the ventral 

aspect of the right caudal lung lobe (black arrow). 

The surrounding parenchyma is consolidated. 
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In human, different patterns have been described with the aim to help to better diagnose the 

disease with the UIP pattern considered as the hallmark imaging pattern of IPF (Raghu et al., 2018). 

UIP pattern is characterized by honeycombing with or without traction bronchiectasis and traction 

bronchiolectasis (Raghu et al., 2018). The presence of a GGO pattern is uncommon in the UIP pattern 

and is usually accompanied by a superimposed reticular pattern (Raghu et al., 2018). The classical 

localization of the UIP pattern in IPF is subpleural with basal predominance (Raghu et al., 2018). 

While the honeycombing and the traction bronchiectasis found in CIPF dogs are in favour of an UIP 

pattern, the extensive GGO pattern is more suggestive of another ILDs (Lynch et al., 2018; Raghu et 

al., 2018). However, even in men, the diagnosis of IPF should not be excluded if the thoracic HRCT 

finding is not in favour of an UIP pattern (Lynch et al., 2018; Raghu et al., 2018).  

The only problem regarding the use of classical thoracic HRCT in CIPF WHWTs is that it 

requires general anaesthesia, which might not be possible in severely affected dogs as an increased 

aesthetic risk is present especially in WHWTs with substantial hypoxemia (Heikkila-Laurila and 

Rajamaki, 2014). Alternatives to thoracic HRCT on dogs under general anaesthesia have been 

assessed in two recent studies in which thoracic HRCT has been performed on awaken dogs with or 

without sedation (Roels et al., 2017a; Holopainen et al., 2019). However, some lesions such as the 

GGO pattern can vary in terms of extent and severity in such conditions which could modify the 

identification and grading of CIPF (Roels et al., 2017a). Moreover, inability to obtain images during 

specific respiration phases may cause secondary artefactual changes such as consolidation during 

expiration and motion artifacts which could also potentially impact the assessment of the parenchymal 

lesions (Holopainen et al., 2019). These differences should be taken into consideration when general 

anaesthesia is contraindicated (Roels et al., 2017a; Holopainen et al., 2019). 

1.5.6. Histopathological features 

Histopathological examination of lung tissue is generally performed after the animal’s death 

due to the invasiveness of the procedure. Therefore, the diagnosis is often confirmed at necropsy 

(Clercx, Fastrès and Roels, 2018). In human, the performance of lung biopsies should be considered 

when HRCT finding is not definitive for UIP pattern or when the clinical features suggest an 

alternative diagnosis than IPF (Raghu et al., 2018; Hochhegger et al., 2019).  

Lesions reported in WHWTs shares features of the 2 most common ILDs in human, UIP 

pattern, classically found in IPF, and nonspecific interstitial pneumonia (NSIP) pattern (Table 1) 

(Syrjä et al., 2013).   
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Table 1. Comparison between the main histological criteria required for the diagnoses UIP or NSIP 

pattern in human and the findings in CIPF in WHWTs. 

Criteria UIP CIPF in WHWT NSIP (fibrosing) 

Pattern Patchy, subpleural or 

paraseptal 

Diffuse with 

subpleural/peribronchi

olar accentuation 

Relatively diffuse 

Interstitial fibrosis Marked, distorting, 

replacing alveolar 

tissue 

Mild to marked, not 

obliterating alveolar 

architecture 

Variable degree 

Honeycombing Yes Yes Not characteristic 

Fibroblastic foci Yes No Absent or 

inconspicuous 

Interstitial 

inflammation 

Minimal, mild Mild to moderate Mild to moderate 

SM hyperplasia Yes Yes Not characteristic 

PCII Hyperplasia Hyperplasia, atypia Hyperplasia in areas of 

inflammation 

Bronchiolar epithelium Bronchial metaplasia 

of alveolar epithelium 

Bronchial metaplasia 

of alveolar epithelium 

Not recorded 

UIP, usual interstitial pneumonia; NSIP, non-usual interstitial pneumonia; CIPF, canine idiopathic 

pulmonary fibrosis; WHWT, West Highland white terrier; SM, smooth muscle; PCII, type II 

pneumocyte. Table extracted from Syrjä et al., 2013. 

 

The lung of CIPF-affected dogs is characterized by a mild to moderate, diffuse, mature 

fibrosis of the interstitium which resembles to NSIP pattern in human (Figure 6). In addition, 

multifocal areas of more severe and cellular fibrosis are found in most dogs which is more 

characteristic of human UIP pattern (Figure 6) (Syrjä et al., 2013). In those areas of immature fibrosis, 

honeycombing, profound alveolar epithelial changes (i.e., PCIIs hyperplasia, multinucleated PCIIs), 

diffuse presence of myofibroblasts in alveolar interstitium, bronchial metaplasia of alveolar epithelium 

(i.e., epithelial pseudostratification and squamous metaplasia), and alveolar luminal changes (i.e., 

distortion of alveolar architecture, acute alveolar damage with hyaline membrane formation and 

emphysematous changes) can also be present (Syrjä et al., 2013; Heikkila-Laurila and Rajamaki, 

2014). In dogs, fibroblastic foci, found specifically in the UIP pattern, are not described (Syrjä et al., 

2013). As in human IPF, in most CIPF cases, there is no evidence of inflammatory change in either the 

parenchyma or the airways (Heikkilä et al., 2011).  

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/myofibroblast
https://www.sciencedirect.com/topics/veterinary-science-and-veterinary-medicine/metaplasia
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/hyaline
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1.5.7. Biomarkers  

Several studies have been conducted to find biomarkers. Specifically, those studies aimed to 

identify biomarkers able to differentiate CIPF from healthy conditions and from other chronic lower 

respiratory diseases (i.e., diagnostic biomarkers) and to predict disease severity and outcome (i.e., 

prognostic biomarkers). Two different methods were used to search for biomarkers in CIPF including 

screening techniques (i.e. pulmonary gene expression by microarray analysis (Krafft et al., 2013) and 

analysis of the BALF proteome (Lilja-Maula et al., 2013)) and targeting techniques (i.e. BALF and 

serum identification of known pro-fibrotic molecules). 

Similar research on biomarkers has been performed in human IPF to predict mortality and 

disease evolution with the objective to improve patient counselling, and treatment related decisions 

including reference for lung transplantation evaluation (Wakwaya and Brown, 2019). However, 

despite investigations, reliable and routinely available predictive and therapeutic biomarkers are still 

missing and the search must be continued (Somogyi et al., 2019).  

Figure 6. Example of histopathological features found in West Highland white terrier affected with 

canine idiopathic pulmonary fibrosis. Transition from mild diffuse fibrosis on the left, to a focus of 

accentuated disease, with severe interstitial fibrosis on the right. Haematoxylin and eosin. Bar, 200 μm. 

Inset: Type 2 pneumocytes hyperplasia and squamous metaplasia of the alveolar epithelium. Figure 

extracted from Syrjä et al., 2013. 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/proteome
https://www.sciencedirect.com/topics/veterinary-science-and-veterinary-medicine/metaplasia
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/alveolar-epithelium
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1.5.7.1. C-C motif chemokine ligand 2 

CCL2 also named monocyte chemoattractant protein 1 is mainly expressed in epithelial cells 

and macrophages of lung tissue in patients with ILDs (Xue et al., 2019). In IPF mouse model and in 

IPF, CCL2, acting preferentially through its receptor the C-C motif chemokine receptor type 2 

(CCR2), has been shown to contribute to fibrosis through a wide variety of mechanisms involving 

inflammation, angiogenesis and myofibroblasts accumulation (Moore et al., 2005; Raghu et al., 

2015b; Osafo-Addo and Herzog, 2017).  

In CIPF, an increased expression of CCL2 gene, confirmed by quantitative reverse 

transcriptase PCR (qRT-PCR), was shown in lung samples from WHWTs affected with CIPF 

compared with control dogs of various breeds (Krafft et al., 2013). Serum and BALF CCL2 

concentrations measured by enzyme-linked immunoassay (ELISA) tests were elevated in dogs 

affected with CIPF, compared with healthy controls of the same breed suggesting that CCL2 could be 

useful as diagnostic biomarker (Krafft et al., 2013; Roels et al., 2015b). In addition, high serum CCL2 

concentrations at the time of diagnosis were shown to be negatively associated with survival time 

(Roels et al., 2015a; Roels et al., 2015b). Finally, serum CCL2 concentrations were also higher in 

WHWTs compared with healthy dogs from other breeds which might be related to the breed 

predisposition of the WHWT for CIPF (Roels et al., 2015a).  

1.5.7.2. C-X-C motif chemokine ligand 8 

The C-X-C motif chemokine ligand 8 (CXCL8) is a neutrophils chemo-attractant cytokine 

secreted by a wide range of cell types including blood monocytes, alveolar macrophages (AMs), 

fibroblasts, endothelial cells, and epithelial cells. In addition to serve as a chemoattractant molecule, 

CXCL8 promotes cellular proliferation, motility and invasion, as well as EMT and angiogenesis (Ha, 

Debnath and Neamati, 2017). Serum CXCL8 levels have been associated with disease progression and 

survival in IPF patients (Guiot et al., 2017).  

Serum and BALF CXCL8 concentrations were measured in WHWTs either healthy or 

affected with CIPF and in healthy dogs from other breeds by ELISA. BALF CXCL8 concentrations 

were higher in WHWTs affected with CIPF compared with healthy WHWTs. However, no difference 

was identified in serum concentrations between healthy and diseased WHWTs (Roels et al., 2015b). In 

healthy dogs, serum CXCL8 concentrations were higher in WHWTs compared with other breeds 

which could be due to the predisposition of the WHWT breed to develop the disease (Roels et al., 

2015a).  

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/reverse-transcription-polymerase-chain-reaction
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/ccl2
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1.5.7.3. Endothelin-1  

The endothelin-1 (ET1), a vasoactive peptide, is suggested to be an important contributor in 

the pathobiology of fibrosing disorders (Swigris and Brown, 2010). In the lung, ET-1 is secreted by 

fibroblasts, endothelial cells, AMs, epithelial cells and polymorphonuclear leukocytes and is known to 

promote fibroblasts activation, proliferation, as well as differentiation into myofibroblasts (Swigris 

and Brown, 2010). In IPF, an increase in lung tissue and BALF ET-1 levels has been reported. In 

addition, studies on IPF mouse models showed that the use of ET-1 receptor antagonist could limit 

bleomycin-induced fibrosis (Swigris and Brown, 2010).  

Serum and BALF ET-1 concentrations were assessed by ELISA in dogs either suffering from 

CIPF, chronic bronchitis (CB), and eosinophilic bronchopneumopathy (EBP), or healthy of either the 

beagle or the WHWT breed. Higher serum ET-1 concentrations were found in CIPF WHWTs 

compared with all the other groups. A cut-off serum concentration value of 1.8 pg/mL has been 

determined for the detection of CIPF with a sensitivity of 100% and a specificity of 81.2%. BALF ET-

1 concentrations were under the detection threshold of the ELISA in healthy WHWTs and in dogs 

with CB, while they were above in all CIPF WHWTs (Krafft et al., 2011).  

1.5.7.4. Procollagen type III amino terminal propeptide  

Procollagen type III amino terminal propeptide (PIIINP) is used as a marker of connective 

tissue metabolism. The propeptide release depends on the amount of collagen produced (Low et al., 

1992). In IPF, PIIINP level, analysed in order to be able to stage the disease and monitor the course of 

the patients, was elevated in both serum and BALF and correlated with disease activity and 

progression (Low et al., 1992).  

In CIPF, PIIINP concentrations were analysed in serum and BALF of dogs either affected 

with CIPF, CB, EBP or healthy, by radioimmunoassay. Serum PIIINP concentrations did not differed 

between the different groups, whereas BALF PIIINP levels were significantly increased in CIPF and 

EBP dogs compared with CB and healthy dogs (Heikkilä et al., 2013). The higher PIIINP level found 

in EBP was already reported and is probably due to secondary fibrosis development (Clercx and 

Peeters, 2007). 

1.5.7.5. Transforming growth factor beta 

The potential interest of serum TGF-ß1 concentration as biomarker of CIPF has been 

investigated in WHWTs affected with CIPF, healthy WHWTs and healthy dogs from other breeds. An 

increase in serum TGF-ß1 concentration was detected both in diseased and healthy WHWTs 
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suggesting that TGF-ß1 could be one of the factors predisposing WHWTs to CIPF (Krafft et al., 

2014). 

1.5.7.6. Activins 

As already said, activin B was detected in the BALF of WHWTs affected with CIPF mostly if 

they had concurrent AE or diffuse alveolar damage, while the molecule was not detected in healthy 

WHWTs. It indicates that activin B could be used as marker of alveolar damage. However, further 

studies are required to confirm those data as they are based on a relative low number of dogs (Lilja-

Maula et al., 2015). 

1.5.7.7. Matrix metalloproteinases 

Matrix metalloproteinases (MMPs) are essential for ECM degradation, wound healing and 

angiogenesis but also for immune response regulation. They have pro and anti-fibrotic capacities. In 

IPF, an imbalance between the pro and anti-fibrotic mediators is reported, driven fibrosis development 

by inducing the activation of latent TGF-β1, EMT, fibrocytes migration, macrophages polarization and 

myofibroblasts differentiation (Mahalanobish et al., 2020). MMP-7 is overexpressed in plasma of IPF 

patients compared with healthy patients and patients with other ILDs (Guiot et al., 2017). In addition, 

MMP-7 is significantly increased in epithelial cells both at the gene and protein levels and also 

significantly correlated with disease severity (Guiot et al., 2017; Todd et al., 2020). Increased 

circulating MMP-2 and -9 have been detected in IPF patients compared to healthy controls (Todd et 

al., 2020). Moreover, increased total MMP-9 concentrations have been observed in BALF of IPF 

patients compared with healthy and high BALF total MMP-9 concentrations were found in IPF 

patients with rapid disease progression (Mckeown et al., 2009). 

Serum and BALF activities of both pro-MMP-2, -7 and -9 and active MMP-2, -7 and -9 were 

assessed by zymography in CIPF WHWTs, healthy WHWTs, healthy dogs from other breeds and dogs 

with CB and EBP (Määttä et al., 2020).  Higher serum pro-MMP-7 activities were found in CIPF 

WHWTs compared with healthy dogs from other breeds, dogs with CB or dogs with EBP. In CIPF 

WHWTs with severe hypoxemia (PaO2 ≤ 60 mmHg), serum pro-MMP-7 activity was significantly 

associated with increased risk of death. In BALF, pro‐ MMP‐ 2 and pro-MMP-9 activities were 

significantly increased in CIPF WHWTs compared with healthy WHWTs and dogs with CB.  Pro‐

MMP‐ 2 activity was also significantly higher in CIPF WHWTs compared with EBP dogs. Finally, 

active MMP‐ 9 was only detected in BALF of CIPF and EBP dogs (Määttä et al., 2020).   
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1.5.7.8. Krebs Von den Lungen-6  

The glycoprotein Krebs Von den Lungen-6 (KL-6) is classified as a human transmembrane 

mucin and is expressed by the PCIIs and the bronchiolar epithelial cells (Hamai et al., 2016; Guiot et 

al., 2017; Sokai et al., 2017; Wakamatsu et al., 2017). KL-6 is considered as the best and the more 

reliable serum diagnostic and outcomes predicting biomarker for human ILDs (Ishikawa et al., 2012; 

Bonella et al., 2019). The increased level of KL-6 in ILDs has been associated with the repairing of 

PCIIs and the increasing of intracellular permeability. KL-6 promotes the proliferation and the 

migration of pulmonary fibroblasts which act during the fibrosis process (Hu et al., 2017; Sokai et al., 

2017).  

Serum KL-6 concentrations were not different between CIPF and healthy WHWTs but higher 

concentrations were observed in terrier breeds. Whether this may reflect a predisposing factor for 

CIPF development merits further investigations (Fastrès et al., 2018). 

1.5.7.9. Serotonin 

The serotonin (5-hydroxytryptamine, 5-HT) is a multifunctional signalling molecule expressed 

in the lung by platelet-derived 5-HT as well as endothelial cells, mast cells and pulmonary 

neuroendocrine cells (Löfdahl et al., 2021). In human IPF, an enhanced activation of serotonergic 

signalling has been reported. Several studies indicated that 5-HT induces TGF-β1. In addition, in in 

vivo IPF models and in vitro human cells experiments, 5-HT receptor antagonist treatment was shown 

to produce significant anti-fibrotic effects (Löfdahl et al., 2021). 

5-HT serum concentration was not assessed in CIPF dogs. In healthy WHWTs compared with 

healthy dogs from other breeds, 5-HT serum and BALF concentrations do not indicate relevant 

interbreed differences and are not in favour of any influence of basal 5-HT concentrations on CIPF 

development in WHWT (Roels et al., 2015a).  

1.5.7.10. Vascular endothelial growth factor  

VEGF is an angiogenic molecule considered as an essential regulator of fibroblasts 

proliferation, migration and transformation. It also partially acts by increasing expression of MMPs 

largely involved in IPF pathogenesis as discussed above (Grimminger, Günther and Vancheri, 2015). 

In IPF, there are several evidences that BALF and serum VEGF levels can predict disease progression 

and severity (Grimminger, Günther and Vancheri, 2015). In addition, nintedanib, one of the approved 

treatments for IPF, competitively binds VEGF receptor (Wind et al., 2019). 
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Despite such interest in IPF studies, VEGF BALF and serum concentrations have been 

assessed by ELISA in only one study in healthy dogs from different breeds including WHWTs (Roels 

et al., 2015a). Unfortunately, values obtained were under the detection limit of the kit which prevented 

the authors to give any conclusive results (Roels et al., 2015a). 

1.5.7.11. Serum C-reactive protein 

The C-reactive protein (CRP) is a major acute phase protein in human and dogs and is used 

as biomarkers of inflammation, infection and trauma (Eckersall and Bell, 2010). CRP can be used in 

IPF to discriminate between healthy and diseased patients and to predict disease progression and 

mortality (Somogyi et al., 2019).  

Serum CRP concentrations were not increased in dogs affected with CIPF and were not 

significantly different between WHWTs affected with CIPF and control dogs (Viitanen et al., 2014; 

Roels et al., 2019). 

1.5.7.12. Others 

In their microarray analysis, Krafft and colleagues (2013) also found up-regulation of 

numerous other genes with a confirmed overexpression by qRT-PCR including C-C motif chemokine 

ligand 7, C-X-C motif chemokine ligand 14 and fibroblast activation protein α (Krafft et al., 2013). 

However, the potential interest of those molecules as biomarker was not further investigated. 

1.6. Treatment 

To date, there is no effective treatments for CIPF (Clercx, Fastrès and Roels, 2018; Laurila 

and Rajamäki, 2020). In human IPF, two anti-fibrotic drugs, nintedanib and pirfenidone, have been 

approved for the management of the disease (Sgalla et al., 2018; Maher and Strek, 2019). Both drugs 

were shown to slow disease progression and impact survival of IPF patients (Glassberg, 2019). In 

addition, there is growing evidence that the use of either pirfenidone or nintedanib decreases the risk 

of acute degradations of lung function and improves life expectancy (Maher and Strek, 

2019). However, the drugs were not documented in CIPF dogs (Clercx, Fastrès and Roels, 2018). 

Therefore, management of CIPF dogs is primarily symptomatic and includes cough suppression, 

cardiac support in case of PH and, when present, control of secondary infection and inflammation with 

the aim to reduce the severity of clinical signs and secondary complications and improve the perceived 

QOL (Clercx, Fastrès and Roels, 2018; Laurila and Rajamäki, 2020). 

Oral or inhaled corticosteroids appear to relieve cough in most dogs, especially when 

concurrent bronchial changes are reported (Corcoran et al., 1999; Heikkilä et al., 2013). Antitussive 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/acute-phase-proteins
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/biomarkers
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/fibroblast
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/corticosteroid
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drugs may also be considered against cough (Clercx, Fastrès and Roels, 2018; Laurila and Rajamäki, 

2020). As in human IPF, the use of sildenafil, a phosphodiesterase-5 inhibitor,  in case of 

concomitant PH was shown to improve clinical signs and QOL (Clercx, Fastrès and Roels, 2018; 

Sgalla et al., 2018; Johnson and Stern, 2020; Laurila and Rajamäki, 2020). In IPF, proton pump 

inhibitors or histamine H2 receptor blockers to treat microaspirations remains recommended because 

of the low cost and risk of adverse effect of such therapy even if no proof of action on survival is 

documented (Raghu et al., 2018; Sgalla et al., 2018; Wakwaya and Brown, 2019). Their use in CIPF 

dogs might also be benefit as supported by the increase of microaspirations rate in WHWTs (Määttä et 

al., 2018; Laurila and Rajamäki, 2020). Finally, again as in human IPF, causes of acute worsening of 

respiratory function, such as bacterial pneumonia for example, should be investigated and treated 

appropriately (Sgalla et al., 2018; Somogyi et al., 2019; Laurila and Rajamäki, 2020). 

Other general recommendations include weight loss in obese patients in order to increased 

thoracic wall compliance and decreased extrathoracic and intra-abdominal adipose tissue. 

Environmental modifications such as the improvement of air quality, and the reduction of recognized 

triggers of clinical signs such as frequent grooming for example can also be recommended (Roels et 

al., 2018; Reinero et al., 2020). Keeping routine daily walks is encouraged unless the dog shows signs 

of exhaustion (Laurila and Rajamäki, 2020). Indeed, lower routine physical activity in IPF patients is 

associated with worse survival rates and pulmonary rehabilitation can be helpful to decrease dyspnoea 

and breathlessness and seems at least during the first 6 months of implementation to improve QOL, 

6MWD and reduce anxiety and depression (Sgalla et al., 2018; Somogyi et al., 2019). 

1.7. Prognosis 

The prognosis of the disease is poor. Lilja-Maula and colleagues (2014) reported a median 

survival time of 32 months (range: 2–51 months) from onset of clinical signs, and 11 months (0–40 

months) from diagnosis in 7 WHWTs with CIPF-related death. In another study about 16 CIPF 

WHWTs, median survival time after diagnosis was 255 days (1–1375 days) (Thierry et al., 2017). 

Finally, in an online questionnaire–based survey filled in by 458 WHWT owners, the overall survival 

time after CIPF diagnosis was 1.4 years (0–8.5 years) and the cause of the death was CIPF-related in 

76.7% of cases (Roels et al., 2018). The lack of prognostic biomarker as well as the variability in 

individual disease progression contribute to the difficulty to predict disease progression in WHWTs 

affected with CIPF (Clercx, Fastrès and Roels, 2018).   

The median survival time of IPF patient is of 3-5 years. However, as in CIPF, IPF outcome is 

difficult to predict as the clinical course of the disease is highly heterogenous among patients with 

patients who remains relatively stable with episodes of acute deterioration, patients who have a slow 

but progressive clinical course, and patients who have an evolution rapidly leading to death from 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/pulmonary-hypertension
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respiratory failure (Richeldi, Collard and Jones, 2017; Kishaba, 2019a; Somogyi et al., 2019; 

Wakwaya and Brown, 2019). 

1.8. Unexplored fields 

Despite consequent research on CIPF, there is still many unexplored fields (Clercx, Fastrès 

and Roels, 2018; Laurila and Rajamäki, 2020). The prevalence and the incidence of the disease remain 

unknown and difficult to establish (Clercx, Fastrès and Roels, 2018; Laurila and Rajamäki, 2020). 

Early identification of affected dogs is challenging for the owners because of clinical signs that may 

mimic ageing. Moreover, disease is easily confounded by veterinarians with other illnesses sharing 

similar presentation and clinical signs, such as congestive left heart failure, chronic bronchopneumonia 

with bronchomalacia, lung neoplasia and angyostrongylosis for example (Corcoran et al., 1999; 

Heikkila-Laurila and Rajamaki, 2014; Clercx, Fastrès and Roels, 2018; Laurila and Rajamäki, 2020). 

The diagnosis requires at least the performance of thoracic HRCT which is not available in all 

veterinary structures. Besides, only histopathological examination, which may be sometimes 

unconclusive, can confirm CIPF (Heikkilä et al., 2011; Syrjä et al., 2013; Roels et al., 2017a; 

Holopainen et al., 2019). Disease progression is highly variable between dogs and difficult to predict. 

Despite numerous investigations to identify biomarkers for disease diagnostic and prognostic 

assessment, reliable and routinely available biomarkers are still missing (Fastrès et al., 2018; Krafft et 

al., 2011; Krafft et al., 2013; Krafft et al., 2014; Heikkilä et al., 2013; Lilja-Maula et al., 2013; Lilja-

Maula et al., 2015; Viitanen et al., 2014; Roels et al., 2015a; Roels et al., 2015b; Määttä et al., 2020). 

CIPF causes have not yet been identified and are probably multiple. While viral and fungal infection 

doesn’t seem to be associated with CIPF (Roels et al., 2016), genetic predisposition, presence of 

increase rate of GER and specific environmental exposures are suspected to play a role in disease 

development and pathogenesis (Maatta et al., 2017; Clercx, Fastrès and Roels, 2018; Roels et al., 

2018; Piras et al., 2020). However, further studies are needed to clearly establish it. The exact 

pathophysiology leading to the development and the progression of lung fibrosis is not yet completely 

understood. Better understanding of pathways leading to CIPF would allow to identify therapeutic 

targets with the aim to prevent, slow or even cure the disease. Indeed, currently, therapeutic options 

are only symptomatic and there are still no specific ongoing therapeutic trials in CIPF (Clercx, Fastrès 

and Roels, 2018; Laurila and Rajamäki, 2020).   

2. The lung microbiota 

The LM corresponds to the collection of bacteria that colonize the lung. Table 2 collects most 

of the terms commonly employed to describe the microbiota and that will be used in the present work.   
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Table 2. Microbiota definitions. 

Microbiota All the bacteria found in a region or habitat  

Microbiome  

 

The totality of the microbes (bacteria, fungi and viruses) with their 

genes and the environment in which they interact 

16S ribosomal DNA  

 

A specific DNA gene that is unique to bacteria and that comports 

variable and common regions between each bacterium 

Taxonomy 

 

The science that identifies and classifies the species. Bacteria are 

classified in taxonomic groups corresponding to phylum, class, order, 

family, genus and species in descending order 

OTU 

 

Specific sequences based on sequence similarity (typically threshold is 

97%) to reference genes. This is taken as a proxy measure for species-

level divergence 

Taxon  

 

A group of phylogenetically related microbes that belong to the same 

taxonomic group 

Amplicon 

 

An amplified fragment of DNA from a region of a marker gene (such as 

16S rDNA) that is generated by PCR 

Richness Number of different taxa within a sample 

Evenness 

Equality of the relative abundances among different taxa. The evenness 

varies from 0 to 1 and the more the relative abundances of taxa differ 

the lower the evenness is  

α-diversity  Amount of variation in sequences composition among a sample 

β-diversity Amount of variation in sequences composition among sampling units 

Ecological parameters Refers to the richness, the evenness and the diversity   

Resilience 

The capacity of the microbiome to absorb disturbance and reorganize 

itself while undergoing change, so as to retain essentially the same 

function, structure, and identity 

Dysbiosis 
A condition in which the normal structure of the microbiome is 

disturbed, often through external pressures  

DNA, deoxyribonucleic acid; OTU, Operational taxonomic unit; PCR, polymerase chain reaction. 

Table adapted from (Segal et al., 2014; Rogers et al., 2015; Ricotta, 2017; Costa et al., 2018). 

2.1. History 

Historically, conventional culture-based techniques that imply to isolate ex vivo and culture 

bacteria were used to study bacterial communities based on morphological and biochemical 

characteristics (Dickson et al., 2016). However, the vast majority of the bacteria were not detected by 

culture. Indeed, some are unculturable, most require specific growth conditions (culture media, 

incubation conditions, etc.) that have not or cannot be reproduced experimentally and some are rare, 

slow growing and may be missed (Streit and Schmitz, 2004; Woo et al., 2008). 

Secondary to the development of culture-independent techniques, a large project named the 

Human Microbiome Project has been launched in 2007 by the National Institutes of Health to study 

the microbiota in 18 parts of the human body. It provided significant insights into the function and 

diversity of the human microbiota (The Human Microbiome Project Consortium, 2012). However, the 

lung was not targeted by this project as it was considered as sterile. The sterility of the lung was 
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supported by three concepts: (1) the absence of growth in lung specimens using classic culture-based 

protocols designed to detect respiratory pathogens, (2) the thought that the bacteria identified in the 

lungs only reflect contamination from upper airways and (3) the thougth that there is no resident flora 

that can reproduce into the lung environment (Dickson et al., 2016). 

The first study about the LM using culture-independent technique was published in 2010 by 

Hilty and colleagues. It provided two major results further validated by other papers including the 

description of the LM in healthy patients and the description of LM alteration in asthmatic patients 

(Hilty et al., 2010). Numerous studies were then published about the LM, in various lung diseases, 

contributing to improvement of the knowledge in this field. 

In healthy dogs, the first report about the presence of a LM was published in 2016 by Ericsson 

et al. They described the LM in a cohort of healthy experimental beagle dogs (Ericsson et al., 2016). A 

pilot study and a poster communication were also produced by our team at the same period of time 

assessing the LM in healthy dogs from different breeds and in dogs affected with CIPF and comparing 

the LM between healthy WHWTs living either in Finland or in Belgium, respectively (Fastrès et al., 

2017b; Roels et al., 2017c).  

2.2. Techniques used to describe the lung microbiota 

2.2.1. The 16s rDNA amplicon sequencing 

The study of lung microbial communities was made possible thank to the development of 

culture-independent methods. The use of those methods becomes attractive secondary to the reduction 

of the cost linked to such studies and the development of sequencing technologies and bioinformatics 

analytic tools facilitating results analysis (Dickson et al., 2016). Culture-independent methods are 

based on the direct analysis of bacterial DNA or ribonucleic acid (RNA), without any cultural step. 

Different culture-independent methods are available to study the microbiota, however, in this research, 

only the partial 16S rDNA amplicon sequencing method was used. In this section, a brief description 

of this technique is presented. Several reviews are available describing all the different culture-

independent methods that can be used to analyse the microbiota (Fraher et al., 2012; Doggett et al., 

2016; Boers et al., 2017; Slatko et al., 2018; Vargas-Albores et al., 2019)  

  The 16S rDNA amplicon sequencing technique is the most commonly used method to study 

bacterial communities (Moffatt and Cookson, 2017; Slatko et al., 2018). The advantages of the 16S 

rDNA amplicon sequencing technique include the low cost of the technique, the high sensitivity 

allowing bacterial identification at species level in 62 to 92% of cases, the rapidity, and the possibility 

to classify the bacteria into classes similar to the phylogenetic classification (Woo et al., 2008). 

Indeed, the 16S rRNA gene is an non-coding gene, ubiquitous among bacterial communities that has 



Chapter 1  Introduction 

  35 

kept a constant structure and function over time (Woese, 1987; Fraher et al., 2012; Vargas-Albores et 

al., 2019). It is composed by nine highly conserved regions across taxa, that enables the design of PCR 

primers, and nine hypervariable regions (V1-V9) used to distinguish between taxa and that yield a 

phylogenetic signal useful for bacterial identification (Clarridge, 2004; Fraher et al., 2012; Moffatt and 

Cookson, 2017; Vargas-Albores et al., 2019). Thanks to these characteristics, the 16S rRNA gene is 

considered as the universal target for bacterial identification using sequencing. The bacterial 

classification based on the 16S rRNA gene was developed in the 1970s (Woese and Fox, 1977). The 

large used of the 16S rRNA gene to study and classify bacteria in the following years leads to the 

availability of large reference databases increasing the bacterial identification rate (Woo et al., 2008; 

Dickson et al., 2016). First studies typically sequenced the entire 16S rRNA gene which is about 1,550 

base pairs long (Boers, Jansen and Hays, 2019). However, sequencing of long fragment reduced the 

sequencing depth, limiting the diversity. Therefore, massively parallel sequencing technologies 

progressively focused on the sequencing of shorter fragments at greater depth (Boers, Jansen and 

Hays, 2019).  

The 16S rDNA amplicon sequencing technique includes several steps. Firstly, after the 

collection of the sample of interest, DNA present in the sample is extracted, purified and quantified. 

Secondly, a fragment of the 16S rDNA is amplified by PCR using primers targeting constant regions 

of the gene. Amplicons obtained are then purified and prepared to form libraries. The libraries are 

sequenced. Finally, sequences are cleaned and assessed for quality before being clustered in 

operational taxonomic units (OTUs) and aligned to bacterial genome database for identification (Boers 

et al., 2019). The taxonomic level of identification will depend on the percentage of homology 

between sequences. By convention, clustered sequences in OTUs with 97% of homology allows 

identification until genus- or species-level phylogeny (Větrovský and Baldrian, 2013). 

2.2.2. Challenges associated with the study of the lung microbiota 

Numerous parameters (e.g., sampling procedure, contaminations, sequencing strategy, 16S 

rDNA region sequenced, taxonomic classifier, etc.) are able to influence results of lung bacterial 

community studies. The absence of standardization of these parameters makes it difficult to compare 

studies of the LM. Principal challenges associated with the study of the LM using the 16S rDNA 

amplicon sequencing technique are reported in this section.   

First, the LM can be studied from different types of samples including BALF, sputum, 

protected brush and lung tissue. Depending on the sample type, variations in contamination, sampling 

volume, lung area investigated, etc. can provide different results. For example, increased diversity and 

different β-diversity have been reported in sputum compared with BALF and brush samples (Hogan et 

al., 2016). The bacterial load is also higher in sputa compared with BALF specimens (Marsh et al., 
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2018). In human, several studies indicated that using BALF to study LM was not confounded by oral 

microbiota contamination and was considered as an acceptable technique to investigate the LM 

(Morris et al., 2013; Segal et al., 2013; Bassis et al., 2015). Even if oral contaminations are more 

likely in sputum, it doesn’t seem to alter the meaningful microbial signal (Dickson et al., 2016).   

Variability of LM results associated with the used of the 16S rDNA amplicon sequencing 

includes notably the choice of the fragment amplified which is variable between studies. In all cases, 

sequencing of only a part of the 16S rRNA gene decreases the diversity compared with the sequencing 

of the full-length gene at similar sequencing depth. To study the LM, it has been showed that more 

accurate estimation of the bacterial richness could be reached by amplifying either V1–V3 or V1–V4 

regions of the gene (Kim, Morrison and Yu, 2010). By sequencing partial sequences of the 16S rRNA 

gene and depending on the sequences selected, different degrees of segregation can be achieved 

between bacteria (Mizrahi-Man et al., 2013; Boers et al., 2019). For some bacteria, the discriminatory 

power is generally restricted to the genus level. This could contribute to reduce the diversity by 

preventing identification of bacteria with close genetic background. However, it could also artificially 

increase the diversity when same bacteria are identified as 2 different entities because of mutations 

inducing more that 3% of variability. Indeed, sequences are grouped together when they shared 97% 

of homogeneity and separated when they differed from more than 3%. In the same idee, depending on 

the fragment amplified, different results can be obtained at least at the species level (Boers et al., 

2019). A number ranging from 1 to 15 of copies of the 16S rDNA can be identified depending on the 

bacteria (Klappenbach et al., 2001). Moreover, the number of copies can even vary in bacteria from 

the same species (Stoddard et al., 2015) which complicates the analysis, could artificially increase the 

relative abundance of certain bacteria and may result in a false community structure (Větrovský and 

Baldrian, 2013; Stoddard et al., 2015; Vargas-Albores et al., 2019).  

Another important challenge is to deal with the fact that the 16S rDNA amplicon sequencing 

technique is based on PCR that suffers from numerous biases such as amplification biases for 

example. As a consequence, avoiding contaminations with the use of this method is crucial especially 

in lung samples, in which the bacterial load is low (Salter et al., 2014; Marsh et al., 2018). Indeed, 

amplification of contaminant bacterial DNAs can lead to completely aberrant results. In LM studies, 

contaminations can occur at different steps including sampling and laboratory analyses and can come 

from different sources such as the upper respiratory airways and laboratory reagents for example 

(Salter et al., 2014; Dickson et al., 2017a; Marsh et al., 2018).  To control and detect contaminations, 

it is important to process negative controls alongside clinical specimens through all analytic steps from 

the sampling to the sequencing. Controls of any equipment or media used during the analyses are also 

relevant such as bronchoscope wash for example. In addition to negative control samples, strict 

laboratory controls of all reagents and machines are required. To avoid variations in background 
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contamination, batched analyses are also recommended (Salter et al., 2014; Marsh et al., 2018). 

Contaminations from upper airways cannot be prevented totally, however, they seem to minimally 

alter the LM in BALF specimens obtained through bronchoscopy (Charlson et al., 2011; Bassis et al., 

2015; Dickson et al., 2015; Dickson et al., 2017a). The contamination from upper airways and saliva 

in sputum specimens remains unknown (Moffatt and Cookson, 2017). Other PCR biases could also 

come from inaccurate amplification, such as preferential annealing or chimeric PCR products and 

undetection of some genes due to low bacterial abundance in samples (Kanagawa, 2003; Jany and 

Barbier, 2008). 

The impact of the sequencing strategy (i.e., read length, single or paired end) on LM results 

was not clearly investigated in the literature (Mizrahi-Man et al., 2013). Numerous reference databases 

can be used to generate identification of bacteria based on the 16S rDNA amplicon sequencing 

including SILVA (Pruesse et al., 2007), RDP (Cole et al., 2003), GreenGenes (DeSantis et al., 2006), 

or NCBI database (Federhen, 2012). The accuracy of the identification obtained using these databases 

will depend on their quality and their completeness knowing that all reference databases contain 

poorly annotated or unidentified sequences (Boers et al., 2019).  

Finally, the 16S rDNA amplicon sequencing method is frequently criticized because of its 

inability to distinguish dead from alive bacteria (Doggett et al., 2016). Recent developments exist to 

bypass this problem by degrading free DNA and DNA in permeable and thus dead bacteria before 

PCR amplification (Codony, Dinh-Thanh and Agustí, 2020). However, these techniques also suffered 

from biases as they can damage living bacteria and generate wrong conclusions (Codony et al., 2020). 

The presence of different effective mechanisms of clearance in lungs such as AMs (Joshi et al., 2018) 

and the speed of about 10 mm/min of the mucociliary escalator (Whaley, Wolff and Muggenburg, 

1987), might prevent the amplification of free DNA coming from dead bacteria. Moreover, the 

detection of dead bacteria could be clinically relevant as they are able to induce immune response 

(Beck, Young and Huffnagle, 2012; Morris et al., 2013).  

2.3. Role of the lung microbiota 

It is now clear that the LM plays an important role in the homeostasis of the lungs by its action 

on the metabolism, the development of the immune system and the protection against pathogens 

(Lloyd and Marsland, 2017; Wang et al., 2017). Indeed, dysbiosis and altered LM, especially in early 

life, has been associated with numerous lung diseases and is able to affect risk of diseases, 

exacerbations, response to drugs and clinical outcomes (Wang et al., 2016; Man et al., 2017; Shukla et 

al., 2017; Wang et al., 2017). However, it remains unknown whether the LM alterations are a cause or 

a consequence of lung diseases (Fastrès et al., 2017a; Huang et al., 2017). 
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The principal function of the lungs is the exchange between oxygen and carbon. The perpetual 

entry of air and foreign substances represents a constant stimulation of the local immune system which 

have to remain tolerant and not react except above a certain threshold (Wang et al., 2017). The LM is 

suspected to contribute to the establishment of this threshold (Man et al., 2017). Indeed, in germ-free 

mice the absence of lung bacteria induces higher susceptibility to pulmonary pathogens, house dust 

and asthma by increasing the Th2 immune response, notably (Brown et al., 2017; Man et al., 2017). 

Several data also suggest that the presence of specific bacteria at certain periods of the life is crucial 

for shaping the adaptative immune response and developing correct immune tolerance (Man et al., 

2017; Pattaroni et al., 2018). Moreover, in human the development of the LM is associated with a 

decrease in lung inflammation, recruitment of inflammatory cells and production of pro-inflammatory 

cytokines (Man et al., 2017; Wang et al., 2017). Investigating how the LM may regulate innate 

immunity has recently gained interest (O’Dwyer, Dickson and Moore, 2016; Zhang et al., 2020), and a 

role for constitutive sensing of microbes and their metabolites has been proposed (Zhang et al., 2020). 

The gut microbiota seems to affect pulmonary immunity and a link between the gut microbiota and the 

lungs, named the gut–lung axis, has been described (O’Dwyer, Dickson and Moore, 2016; Zhang et 

al., 2020). Indeed, dysbiosis of the gut microbiota in early age is associated with chronic lung diseases 

development such as asthma and increases the susceptibility to pulmonary infectious diseases 

(O’Dwyer, Dickson and Moore, 2016). This interaction between the gut and the lung is bidirectional 

and changes in LM also affect the gut microbial communities (Dumas et al., 2018; Zhang et al., 2020). 

Endotoxins, microbial metabolites, cytokines, and hormones as well as regulatory T cells acting via 

the bloodstream connection have been proposed as mediators of modulation of immune responses and 

inflammation between the gut and the lungs (O’Dwyer, Dickson and Moore, 2016; Zhang et al., 

2020).  

The microbiota has also an action on the protection of the lungs by promoting the innate 

response against pathogens and their clearance from the airways (Brown et al., 2017; Man et al., 

2017). Finally, the LM is also showed to increase resistance to lung infection (Brown et al., 2017).  

2.4. Lung microbiota in healthy condition 

2.4.1. Development and composition in human 

The presence of a LM has been reported in human early in gestation (Al Alam et al., 2020). 

Temporal changes in the LM were identified during the foetal development although the causes and 

the factors influencing this maturation are unknown (Al Alam et al., 2020). Some overlaps between 

the placental and the foetal LM has been shown (Piersigilli et al., 2020). After birth, the microbiota is 

relatively homogenous across organs and resembles that of the mother (Dominguez-Bello et al., 2010). 

The resilience of the LM to environmental pressure, such as the delivery mode, is increased in term 

infant compared with preterm infant (Pattaroni et al., 2018). After birth, the microbiota in all organs 
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rapidly differentiates before stabilizing (Dickson et al., 2016). Indeed, the gut microbiota is largely 

variable in young children until the age of 3 years old, when it resembles that of the adults 

(Yatsunenko et al., 2012). Same pattern of variation is described in the upper airways microbiota 

(Biesbroek et al., 2014). In human, the maturation of the LM is rapid, occurring in the 2 first months 

of age (Pattaroni et al., 2018). Different factors throughout life can play a role in the development of 

the LM including host genetics, environmental parameters such as antibiotic administration, diet 

composition, living conditions (air pollution, cigarette smoke), contact with pathogens, and host 

immunity (O’Dwyer, Dickson and Moore, 2016; Shukla et al., 2017; Wang et al., 2017; Yang et al., 

2020).  

In adults, the LM has a low bacterial load which can vary depending on the sample type, the 

sample volume and clinical parameters (e.g., age, lung disease, etc.). In general, bacterial load is 

between 10
4.5 

and 10
8.5

 16S copies/mL in BALF and up to 10
8
 16S copies/mL in sputum which is 

approximatively 2 to 4 times lower than in the oral microbiota (Charlson et al., 2011; Dickson et al., 

2016; Shukla et al., 2017; Marsh et al., 2018). In healthy adult patients, the LM is composed by a 

majority of facultative anaerobic bacteria with a large predominance of Bacteroidetes and Firmicutes 

phyla. Other major phyla include Proteobacteria, Fusobacteria and Actinobacteria (Hilty et al., 2010; 

Erb-Downward et al., 2011; Morris et al., 2013; Dickson et al., 2016; O’Dwyer, Dickson and Moore, 

2016). A core microbiota was defined at the genus level, and includes Prevotella, Veillonella, 

Streptococcus, Pseudomonas, Fusobacterium, Haemophilus and Porphyromonas (Hilty et al., 2010; 

Charlson et al., 2011; Erb-Downward et al., 2011; Beck et al., 2012; Morris et al., 2013; Dickson et 

al., 2016). The LM is close to that of the mouth. Indeed, the oral cavity is considered as the principal 

source of the bacteria composing the LM of healthy patients, although the similarity between the 

mouth and the LM vary among people (Hilty et al., 2010; Erb-Downward et al., 2011; Morris et al., 

2013; Dickson et al., 2016). Little variations of the LM between pulmonary lobes are reported. 

However the LM is considered as quite homogeneous in human (Dickson et al., 2015) 

2.4.2. Composition in dogs 

In healthy dogs the LM as in human is also closer to the oral microbiota than to the nasal or 

the faecal microbiota and has a weak bacterial biomass (Ericsson et al., 2016). Four major phyla are 

described including Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes (Figure 7) (Ericsson 

et al., 2016; Roels et al., 2017c). Dominant genera identified in the canine LM include Pseudomonas, 

Acinetobacter, Cutibacterium, Streptococcus and Pasteurellaceae genus (Ericsson et al., 2016; Roels 

et al., 2017c). 

Compared with human, a large predominance of Proteobacteria is found in the canine LM. In 

their study, Ericsson and colleagues (2016) also described a more uniform community structure 
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between dogs than what was reported in human which could be related to the greater homogeneity of 

their samples (experimental beagle dogs co-housed in a stable environment and fed with the same 

food). 

Roels and colleagues (2017) identified differences between healthy experimental beagles and 

healthy client-owned WHWTs raising the hypothesis that specific modifications of the LM in dogs 

could be related to the breed and/or the living conditions. An impact of the environment on LM in 

dogs was also documented by the identification of differences in the LM of healthy WHWTs living 

either in Finland or in Belgium (Fastrès et al., 2017b). 

Figure 7. Phylum-level composition of airway microbiota in healthy dogs. (A) Bar charts showing 

relative abundance of all taxa detected in bronchoalveolar lavage fluid (BALF) collected from 16 

intact adult female dogs, analysed using amplification of the V4 region of the 16S rDNA and  

annotated to the taxonomic level of phylum using the Greengenes database (Ericsson et al., 2016). (B) 

Bar charts showing relative abundance of all taxa detected in BALF collected from 10 healthy West 

Highland white terriers (WHWTs) coming from either Finland (FI) (n = 5) or Belgium (BE) (n = 5), 

analysed using amplification of the V1-V3 region of the 16S rDNA and annotated to the taxonomic 

level of phylum using the SILVA database (Fastrès et al., 2017b). (C) Bar charts showing relative 

abundance of all taxa detected in BALF collected from 10 adult beagle dogs, 5 healthy WHWTs and 7 

WHWTs affected with canine idiopathic pulmonary fibrosis (CIPF), analysed using amplification of 

the V1-V3 region of the 16S rDNA and annotated to the taxonomic level of phylum using the SILVA 

database (Roels et al., 2017c). 

2.4.3. Composition in other species 

In horses, only one study has been published about the LM (Fillion-Bertrand et al., 2018). 

Results of the study showed that BALF samples have also a low bacterial load compared with nasal 

and oral specimens and a lower richness and diversity. Predominating phyla in horses include 

Proteobacteria, Acidobacteria and Firmicutes. No dominant OTU characteristic of the LM has been 
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identified. Finally, modifications in environmental living conditions (i.e., food and housing) as well as 

diseased status are found to modify the LM.  

The LM in pigs and sheep has been studied as a model for human but also because bacterial 

respiratory diseases, especially infectious pneumonia, represent an important economic loss in the 

swine industry (Glendinning et al., 2016; Huang et al., 2019).  In swine, commonly identified phyla 

include Proteobacteria, Firmicutes, Tenericutes and Bacteroidetes (Siqueira et al., 2017; Huang et al., 

2019; Li et al., 2021). The dominant genus reported in pigs is Mycoplasma. Other major genera 

reported include Escherichia-Shigella, Lactotococcus, Macrococcus, Methylotenera, Ureaplasma and 

Phyllobacterium (Huang et al., 2019; Li et al., 2021). As in other species, changes in LM have been 

associated with diseased conditions (Siqueira et al., 2017; Huang et al., 2019; Li et al., 2021). In 

sheep, the LM is dominated by Corynebacterium, Bacillus, Enterococcus, Klebsiella, Mannheimia, 

Micrococcus, Moraxella, Pasteurella, Pseudomonas, Staphylococcus and Streptococcus (Glendinning 

et al., 2016). As in human, different degrees of spatial variability are identified between different lung 

segments in sheep (Dickson et al., 2015; Glendinning et al., 2016). 

Finally, the LM of rodents as a model for human has also extensively been studied in healthy 

and diseased conditions. Studies in healthy mice have confirmed that the LM is different of that from 

other body sites, such as the oral cavity or the gut (Barfod et al., 2015; Dickson et al., 2018; Kostric et 

al., 2018). The mice LM communities are composed mainly at the phylum level by Firmicutes, 

Proteobacteria and Actinobacteria, while being composed mainly at the genus level by Delftia, 

Lactobacillus, Propionibacterium, Rhodococcus, and Streptococcus (Kostric et al., 2018). In rat lungs, 

a large predominance of Proteobacteria followed by lower percentage of Firmicutes, Bacteroidetes, 

and Actinobacteria phyla is reported. Prominent genera include Serratia, and in smaller proportions 

Ralstonia and Brucella (Li et al., 2017a; Finn et al., 2018). The diversity (Kostric et al., 2018) and the 

richness (Singh et al., 2017; Kostric et al., 2018) of the mice LM have been shown to increase with the 

age, while, in adults, the LM seems to be quite similar among individuals (Barfod et al., 2015; Kostric 

et al., 2018). As in mice, the LM of adult rats is consistent between individuals (Finn et al., 2018). The 

sex also seems to have an impact on the LM in mice (Barfod et al., 2015). The LM in early-life mice 

has been showed to cluster by environment and to change rapidly according to environmental 

alterations, while a higher resilience towards environmental variations is found in adults (Dickson et 

al., 2018; Kostric et al., 2018). Environmental changes by exposition of rats to particle matter also 

result in an altered microbial composition with an increase in bacterial diversity and in abundance of 

potentially pathogenic bacteria (Li et al., 2017a). Finally, studies performed in healthy mice and rats 

have shown that antimicrobial drug administration can alter the LM compared to non treated animals 

(Barfod et al., 2015; Dickson et al., 2018; Finn et al., 2019).   
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2.5. Variation of the lung microbiota in healthy and diseased states 

The LM is considered as a dynamic ecosystem which results from the balance between three 

phenomena: bacterial immigration, elimination and local growth (Charlson et al., 2011; Bassis et al., 

2015; Dickson et al., 2016). In healthy conditions, immigration and elimination predominate while 

local growths are more predominant in diseased conditions (Figure 8) (Dickson et al., 2015).  

 

Figure 8. Ecological modelling of the respiratory microbiome (Dickson et al., 2016). (a) The 

constitution of the respiratory microbiome is determined by three factors: microbial immigration, 

microbial elimination, and the relative reproduction rates of its members. In health, community 

membership is determined primarily by immigration and elimination; in advanced lung disease, 

membership is determined primarily by regional growth conditions. (b) The adapted island model of 

lung biogeography. Community richness in health for a given site in the respiratory tract is a function 

of immigration and elimination factors. 
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Bacterial immigration includes 3 phenomena: microaspirations, inhalation and dispersion 

along mucosae and is considered as the primary source of bacteria in the lungs (Dickson et al., 2016). 

This hypothesis is supported in human and dogs by the presence of overlaps between the oral and the 

LM (Bassis et al., 2015; Ericsson et al., 2016; Dickson et al., 2017a). Microaspirations are common 

and ubiquitous in healthy individuals and are considered as the principal mode of microbial 

immigration (Gleeson, Eggli and Maxwell, 1997; Dickson et al., 2017a). Microaspirations also occur 

in dogs, although it is less studied and seems to be related to the facial conformation (Määttä et al., 

2018). Approximatively 10
4
-10

6
 bacteria per mm

3
 are contained in the inhaled air and could contribute 

to the LM (Dickson, Erb-Downward and Huffnagle, 2014). The dispersion of the bacteria directly 

along mucosa has not yet been clearly proved and remains theoretical (Dickson et al., 2016; Dickson 

et al., 2017a). 

The elimination of microbial communities is driven by mechanical, immunological and 

bacterial mechanisms in the lungs (Dickson et al., 2016; O’Dwyer, Dickson and Moore, 2016). 

Mechanical elimination is driven by the muco-ciliary escalator that constantly carries bacteria along 

the mucus layer to the upper airways where they are swallowed or expectorated. The cough also 

contributes to the mechanical elimination of the bacteria. Finally, the lungs possess a large arsenal of 

innate and adaptative immune defences able to recognize, kill and clear the airways. The bacteria 

themselves play also a role in the elimination of their members (Dickson et al., 2016; O’Dwyer, 

Dickson and Moore, 2016).  

Changes in local growth conditions also impact microbial communities. In healthy conditions, 

small variations of the LM have been identified between different pulmonary segments (Charlson et 

al., 2011; Segal et al., 2013; Dickson et al., 2015). However, intra-individual variations were not 

identified in all subjects and were less important than inter-individual ones (Dickson et al., 2015). 

Local variations of the LM are suspected to be related to local changes in the lung microenvironment 

such as the temperature, the oxygen tension, the pH, etc. (O’Dwyer, Dickson and Moore, 2016). Such 

changes in the lung environment are particularly important in diseased lungs and are suspected to 

induce pressure across bacteria, favouriting the growth of more adapted ones (Dickson, Erb-

Downward and Huffnagle, 2014; Dickson et al., 2016; O’Dwyer, Dickson and Moore, 2016). Changes 

in the LM, also named dysbiosis (Table 2) then occur. Dysbiosis of the LM has been associated with 

various chronic and acute respiratory diseases. However, it is still challenging to identify the 

mechanisms beyond the generation and the alteration of the LM and to determine its contribution to 

lung diseases development (Dickson et al., 2016; O’Dwyer, Dickson and Moore, 2016). As alterations 

of the microbiota could act in the pathogenesis of numerous diseases, microbiota manipulations 

therefore potentially represent a potential therapeutic target.  
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2.5.1. Acute diseases 

The LM has been studied in acute pulmonary diseases such as pneumonia, trauma and acute 

respiratory distress syndrome (ARDS) (Dickson et al., 2014; Dickson et al., 2016; Dickson et al., 

2020; Dickson et al., 2017b). These pathologies are characterized by an abrupt increase in bacterial 

load and decrease in bacterial richness and diversity (Dickson et al., 2014). Predominance of one or 

two taxonomic groups is also reported (Dickson et al., 2014; Dickson et al. 2016; Dickson, Erb-

Downward and Huffnagle, 2014). The dysbiosis has been associated with an increase in inflammatory 

markers (Dickson et al., 2017b). Alterations of the LM can predict outcomes and the response to 

treatment in critically ill patients. Indeed, the enrichment of the LM with bacteria mainly found in the 

gut microbiota such as species from the Lachnospiraceae and Enterobacteriaceae families (Escherichia 

coli, Enterobacter spp., and Klebsiella pneumoniae) is frequent in patients with worse outcomes 

(Dickson et al., 2017b; Dickson et al., 2020). The detection of gut-associated bacteria is also 

associated with the presence of ARDS (Dickson et al., 2020). 

In dogs, a dysbiosis of the LM has also been associated with pneumonia. The LM 

composition, mostly in communities acquired pneumonia (CAP), is shaped towards a domination of 

specific taxa and a loss of the bacterial communities found in healthy conditions (Vientós-plotts et al., 

2019). Moreover, the LM alterations identified by 16S rDNA amplicon sequencing are in the majority 

of the cases in good agreement with culture results (Vientós-plotts et al., 2019). 

Studies in acute pulmonary diseases helped to better understand the microbial field and 

suggest that the LM assessment could help to guide the selection of antimicrobial drugs especially 

when culture results are negative (Woo et al., 2008; Johansson et al., 2019; Vientós-plotts et al., 

2019).  

2.5.2. Chronic diseases 

The LM has been extensively described in chronic lung diseases including asthma, chronic 

obstructive pulmonary disease (COPD), cystic fibrosis (CF), bronchiectasis and IPF. In the majority of 

chronic lung diseases, a shift in the microbiota composition from Bacteroidetes phylum towards 

Proteobacteria phylum has been described together with a decrease in diversity and an increase in 

richness and bacterial burden (Dickson and Huffnagle, 2015). Baseline differences in microbial 

population abundance and in microbial diversity have been associated with exacerbation in IPF 

(Molyneaux et al., 2017a) and in COPD (Jubinville et al., 2018), higher mortality and poorer 

outcomes (Molyneaux et al., 2014; Takahashi et al., 2018). However, whether the LM alteration 

represents a cause or a consequence of the disease is still not clear (Fastrès et al., 2017a; Huang et al., 

2017), despite the increasing number of studies investigating microbiota modifications.  
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More precisely, in asthma and allergy, clear evidence has shown that greater environmental 

bacterial exposure and increased bacterial diversity at an early age has a protective role on disease 

susceptibility (Dickson et al., 2016; Wang, Li and Tian, 2017; Mathieu et al., 2018; Heul, Planer and 

Kau, 2019). The presence of a specific microbiota enriched in Proteobacteria is found in asthmatic 

compared to healthy patients (Hilty et al., 2010). Moreover, the presence of specific bacteria, 

especially Streptococcus, Haemophilus, and Moraxella spp. is suggested to alter local immune 

responses and increase disease severity and inflammation (Teo et al., 2015; Heul, Planer and Kau, 

2019). However, in asthmatic patients, the exact impact of dysbiosis on disease development and 

progression remains unclear (Mathieu et al., 2018). In COPD, an increased proportion of 

Proteobacteria and Actinobacteria is found compared with healthy patients (Hilty et al., 2010; Sze et 

al., 2012). Certain bacteria are also associated with the disease such as Pseudomonas aeruginosa and 

Haemophilus spp. (Hilty et al., 2010; Stefano et al., 2017). The dysbiosis, and particularly the 

presence of those bacteria and the decrease of the bacterial diversity, is associated with disease 

severity, poor prognosis and increased inflammatory markers (Erb-Downward et al., 2011; Langille et 

al., 2013; Wang et al., 2016; Stefano et al., 2017; Mayhew et al., 2018; Filho et al., 2019). Moreover, 

dysbiosis can predict exacerbations, and lung remodelling such as bronchiectasis and emphysema 

(Erb-Downward et al., 2011; Langille et al., 2013; Wang et al., 2016; Stefano et al., 2017; Mayhew et 

al., 2018; Filho et al., 2019). In patients with CF, bacterial infections have a great impact on morbidity 

and mortality (Moffatt and Cookson, 2017). Alterations of bacterial communities have been showed 

both during stable and exacerbation of CF. However, the changes seem to be patient-specific (Dickson 

et al., 2016; Huang and LiPuma, 2017; Moffatt and Cookson, 2017). Despite this heterogeneity, a core 

microbiota has been proposed in CF and includes Streptococcus, Prevotella, Rothia, Veillonella, 

and Actinomyces (Coburn et al., 2015; Blanchard and Waters, 2019). When classic CF pathogens such 

as Pseudomonas, Burkholderia, Stenotrophomonas, or Achromobacter are found in the LM of CF 

patients, they tend to predominate (Coburn et al., 2015; Moffatt and Cookson, 2017; Blanchard and 

Waters, 2019). A decrease in bacterial diversity is also reported in CF patients but is more likely due 

to cumulative antibiotic exposure rather than an increase in disease severity (Dickson et al., 2016). In 

bronchiectasis, the LM is also highly heterogeneous between patients, although Proteobacteria 

enrichment and predominance of Pseudomonas, Haemophilus and Streptococcus are frequently 

reported (Dickson et al., 2016; Moffatt and Cookson, 2017; Richardson et al., 2019). The 

predominance of Pseudomonas and Haemophilus in the LM is associated with disease progression and 

an increase in exacerbation frequency (Dickson et al., 2016; Richardson et al., 2019). 

In IPF, the LM is suspected to induce alveolar epithelial lesions and apoptosis by itself and/or 

by activation of immune cells producing pro-inflammatory molecules and to modulate the host 

response. In addition, it is suspected to play a role as a cofactor of fibrosis initiation in genetically 

predisposed individuals (O’Dwyer et al., 2019; Spagnolo et al., 2019). Bacteria can trigger disease 
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progression as infections carry a high morbi-mortality, whereas immunosuppressive treatment 

increases the risk of death and hospitalizations (Fastrès et al., 2017a; Spagnolo et al., 2019). 

Haemophilus influenzae, Haemophilus parainfluenzae, Streptococcus pneumoniae, Moraxella 

catarrhalis, Pseudomonas aeruginosa and Proteus mirabilis have been identified by culture-

dependent technique in 36% of IPF patients (n = 22), suggesting that occult bacterial infections may 

contribute to the development of IPF (Harrison, 2009). In their study on 55 IPF patients, Han and 

colleagues (2014) showed that Prevotella, Veillonella and Escherichia spp. are the most common 

species identified in IPF patients, although their presence is also reported in healthy LM (Han et al., 

2014). The presence of either a specific strain of Streptococcus spp. or Staphylococcus spp., which has 

been reported in less than half of the patients, is strongly associated with disease progression (Han et 

al., 2014). Molyneaux and colleagues (2014) assessed the LM in BALF of 65 IPF patients and 44 

controls and showed that the bacterial load was higher in IPF patients. Moreover, they showed that the 

baseline bacterial burden can predict disease progression and survival, findings which have been later 

confirmed (Molyneaux et al., 2014; O’Dwyer et al., 2019). Potentially pathogenic bacteria 

including Haemophilus, Streptococcus, Neisseria and Veillonella spp. have also been identified in 

higher abundance in IPF compared to healthy patients (Molyneaux et al., 2014). Host-microbiome 

interactions have also been studied and a correlation has been found between the immune response, 

the abundance of specific bacteria and the survival (Huang et al., 2017). Genetic mutations in genes 

involved in immune response are found in IPF that also lead to reduce bacterial clearance and altered 

immune response (Glass et al., 2020). Finally, O’Dwyer and colleagues (2019) shown that dysbiosis 

precedes the peak of inflammation and the development of fibrosis in the lungs of bleomycin mouse 

model (O’Dwyer et al., 2019). Moreover, germ-free mice are protected against mortality following 

bleomycin exposition even if they develop similar severity of fibrosis compared to conventional mice 

(O’Dwyer et al., 2019).  

The role of bacterial infections as a trigger of AE in IPF have also recently been investigated. 

Bacterial load is increased in AE (n = 20) compared with stable (n = 15) disease and a shift in bacterial 

communities is reported towards an increase in Campylobacter and Stenotrophomonas spp. and a 

decrease in Veillonella spp. (Molyneaux et al., 2017a). However, in 170 IPF patients (48 with AE and 

122 with a stable disease) in which 38 different bacterial strains including a majority of Gram-negative 

bacteria (89.5%) were detected, no differences in detection rate between stable and AE IPF patients 

was reported. Klebsiella pneumonia, Mycobacterium tuberculosis and Acinetobacter baumannii were 

the most abundant bacteria identified in both stable and AE IPF patients (Weng et al., 2019). Those 

results suggest that dysbiosis can play a role in at least some cases of AE, although it remains unclear 

whether LM alteration is a cause or a consequence of AE (Molyneaux et al., 2017a). Finally, the 

higher abundance of Campylobacter spp., a digestive bacteria, detected in AE supports the hypothesis 

of a role of GER in exacerbations development (Invernizzi and Molyneaux, 2019).  
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3. Single-cell mRNA sequencing 

The first use of the scRNA-seq performed on a next-generation sequencing platform was 

reported in 2009 (Hedlund and Deng, 2018; Hwang, Lee and Bang, 2018; See et al., 2018). The 

method allows the comprehensive quantification of gene-expression heterogeneity at the single-cell 

level (Hedlund and Deng, 2018; Hwang, Lee and Bang, 2018; Chen, Ning and Shi, 2019). Before the 

development of single-cell transcriptomic analysis strategies, bulk RNA-sequencing technologies have 

been widely used to study averaged gene expression across cell populations limiting the assessment of 

cellular heterogeneity. Indeed, the transcriptome can differ between cells even in similar cell types and 

this variability can be masked in bulk analysis (Hwang, Lee and Bang, 2018). It is important to be able 

to characterize cells as they are considered as the fundamental, structural and functional units of an 

organism (Mesh PubMed). They are working in concert to respond to stimuli in order to maintain 

health. Unfortunately, cell characterization using conventional flow cytometry techniques was also 

limited to a certain number of markers and required prior knowledges to identify cells (Salomon et al., 

2019). In the past several years, the scRNA-seq was used to overcome these limitations and study the 

biology at a microscopic resolution in an unbiased way (Hedlund and Deng, 2018). 

As a consequence, the scRNA-seq reshaped our ability to identify novel cell types and states 

as well as to understand molecular processes of tissues in health and disease (Salomon et al., 2019). It 

also provided insights into tissue cellular composition (Hedlund and Deng, 2018; Salomon et al., 

2019). Indeed, it has been widely used to dissect cellular heterogeneity in various tissue at different 

times and in different conditions for investigating developmental processes, cell responses to different 

stimuli/diseases/treatments, regulatory mechanisms, etc. (Haque et al., 2017; Stubbington et al., 2017; 

Hedlund and Deng, 2018; Papalexi and Satija, 2018; Salomon et al., 2019). The technique has been 

used in humans (Muraro et al., 2016; Mould et al., 2019; Suryawanshi et al., 2019), mice (He et al., 

2018) and other species (Davie et al., 2018; Farnsworth et al., 2020) but to our knowledge, not yet in 

dogs.  

3.1. Method 

Different methods of scRNA-seq have been developed (Hedlund and Deng, 2018; See et al., 

2018; Chen, Ning and Shi, 2019). However, we will focus on the droplet-based technique which was 

used in this work to assess in an unbiased way the heterogeneity of BALF cells and especially 

macrophages in dogs. This method has the advantage to be the most cost effective and time saving 

while at the same time increasing cellular throughput (Macosko et al., 2015; Zheng et al., 2017; Chen, 

Ning and Shi, 2019; Salomon et al., 2019). Indeed, it works with small volume reaction chambers 

which results in decreasing reagents cost and increasing sensitivity (Macosko et al., 2015; Salomon et 

al., 2019).  
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The droplet-based scRNA-seq method relies on the rapid encapsulation of individual cells 

with barcoded beads in suspension into a water-in-oil droplet (Macosko et al., 2015; Zheng et al., 

2017). The different steps of the process are resumed in Figure 9. Droplets are formed into a 

microfluidic system where water and oil are brought together at the junction between channels 

(Macosko et al., 2015; Zheng et al., 2017). New microfluidic platforms, such as the 10X Genomics 

Chromium system used in this work, are now capable of generating an emulsion of thousands of 

droplets in a few minutes (Zheng et al., 2017; Salomon et al., 2019). The emulsion results in the 

formation of gel beads in emulsion (GEMs) containing a single cell, a barcoded bead and different 

reagents. The barcoded beads are recovered by multiple oligonucleotides composed by: (1) sequencing 

adapters/primers for molecular amplification and sequencing of the transcripts; (2) cell barcode, an 

unique sequence of nucleotides identical to each oligonucleotide on the bead which allows the 

identification for each amplified transcript of the cell origin; (3) unique molecular identifier (UMI), an 

unique sequence of nucleotides that individually tag each polyadenylated RNA captured and allows 

the identification of PCR duplicates; and (4) poly-d(T) region to prime polyadenylated RNA 

transcripts (Macosko et al., 2015; Zheng et al., 2017; Salomon et al., 2019). After encapsulation, cells 

are lyzed into the GEMs, polyadenylated RNA are linked by the poly-d(T) sequences on the bead and 

the reverse transcription (RT) occurs. During this first-strand synthesis, the cell barcode and the UMI 

are incorporated into the complementary DNA (cDNA) molecules (Zheng et al., 2017). The emulsion 

is then broken and all the next steps are conducted onto the mix of all cDNAs obtained. Following the 

emulsion breakage, cDNAs are amplified via PCR. Libraries are prepared by incorporation of 

compatible adapters for sequencing and sequencing is then performed. After the sequencing, data 

generated must be processed into a matrix displaying for each cell the number of transcripts (UMIs) of 

each gene detected (Zheng et al., 2017; Salomon et al., 2019). Based on the matrix cells sharing 

similar transcriptomic information can be clustered. Using the differentially expressed genes (DEGs) 

between the clusters, each of them can be characterized. The identification of DEGs is also crucial for 

interpreting the biological differences between compared clusters and conditions. Enrichment in 

specific functions or phenomena can also be calculated by comparing DEGs with known gene lists 

(Macosko et al., 2015; Zheng et al., 2017; Stuart and Satija, 2019).  
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Figure 9. Illustration of the single-cell mRNA sequencing process from the samples obtention to the 

sequencing. RT, reverse transcription; UMI, unique molecular identifier. Created in BioRender.com.  

3.2. Limitations 

The droplet-based scRNA-seq technique has several limitations which have to be taken into 

account. First, the technique requires fresh samples that have to be rapidly processed to minimize the 

perturbation of the cell transcriptome after samples collection and to produce high quality 

transcriptomic data (Zheng et al., 2017). Broken or dead cells can generate low-quality data and may 

lead to misinterpretation by releasing their RNA content into the suspension. The released material can 

be encapsulated within droplets and processed with a cell thereby changing its expression profile 

(Salomon et al., 2019). The speed, reproducibility and high cell capture rate of droplet-based scRNA-

seq methods allow to reduce this contamination (Zheng et al., 2017; Chen, Ning and Shi, 2019). In 

addition, during encapsulation, a certain percentage of doublets (coencapsulation of 2 cells in the same 

droplet) can be achieved also conducting to misinterpretation of scRNA-seq data. Doublets can be 

prevented by reducing the concentration of both cells and beads which increases both waste and cost 

by reducing the droplet occupancy (Chen, Ning and Shi, 2019; Salomon et al., 2019). Detection and 

removal of broken cells, dead cells and doublets can also be performed by controlling the scRNA-seq 

data quality which is crucial in such analysis. Accordingly, cells with few or extremely high number of 

reads corresponding respectively to broken/dead cells and doublets must be excluded. Detection of a 

higher rate of reads mapping to mitochondrial genome is also informative for identifying low-quality 

cells (Chen, Ning and Shi, 2019). 

Secondly, with the Chromium 10X system, used in this work, the rate of coencapsulation of a 

cell and a bead into a droplet corresponds to ~50% of input cells (Zheng et al., 2017). In addition, it 

has been established that only 10-20% of cell transcripts are captured and reverse transcribed (Hwang, 
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Lee and Bang, 2018). This low efficiency results in the misdetection of rare cell populations if 

insufficient cell numbers are analysed and in the inability to detect poorly expressed messenger RNAs 

(See et al., 2018; Chen, Ning and Shi, 2019).  

Finally, especially in dogs, the lack of annotation of the genome, as well as the lack of 

knowledge on cell identity markers are great challenges to overcome to provide sufficient information 

from samples using this method. Indeed, the mapping ratio of reads is an important indicator of the 

overall quality of scRNA-seq data (Chen, Ning and Shi, 2019). Incomplete genome database may 

prevent the identification of transcripts and the interpretation of the data.  
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Objectives 

In this work, we specifically decided to improve knowledge on CIPF pathogenesis by 

exploring LM dysbiosis and macrophage clusters alterations in the disease. Indeed, the importance of 

lung bacterial communities and their interaction with immune cells have gained interest in IPF 

pathogenesis but also in other lung diseases. A role for bacteria in the development and progression of 

lung diseases is strongly suspected. In the lung, bacterial communities are directly in contact with 

immune cells, especially macrophages which play an important role in tissue homeostasis. 

Macrophages represent almost 70% of all immune cells in the lung tissue and this percentage reaches 

more than 80% in BALF (O’Dwyer, Ashley and Moore, 2016; Yu et al., 2016; Lee et al., 2018; Zhang 

et al., 2018; Nelson and Couto, 2020). The role of macrophages in lung diseases has also recently 

gained interest with the development of new technologies such as the scRNA-seq able to identify 

extremely heterogeneous cell populations upon different conditions (Desai et al., 2018; Zhang et al., 

2018). In IPF, pro-fibrotic and pro-inflammatory macrophage clusters have been described promoting 

lung fibrosis and inflammation (O’Dwyer, Ashley and Moore, 2016; Heukels et al., 2019). All these 

recent discoveries are in favour of an impact of the LM and the innate immunity in lung diseases and 

specifically in IPF which represent a promising field of investigation at the origin of the performance 

of this work.  

1. Assessment of the lung microbiota in dogs 

The role of microorganisms such as viruses and fungi has been investigated in CIPF WHWTs 

(Roels et al., 2016; Roels et al., 2017b). However, the potential role of bacteria in CIPF development 

and progression has not yet assessed. In IPF patients, bacterial infections have been associated with 

higher probability to develop IPF. Moreover, bacteria, directly or indirectly through immune response 

activation, are suspected to play a role in IPF onset, as well as in IPF progression and AE triggering 

(Molyneaux and Maher, 2013; Fastrès et al., 2017a; Olson et al., 2018; Sgalla et al., 2018). The 

development of culture-independent techniques, at the origin of the performance of studies on 

bacterial populations, allowed a better understanding of the LM and its impact on lung diseases 

(Dickson et al., 2016). Therefore, exploring lung bacterial communities and their alterations in 

WHWTs affected with CIPF was the first objective of this work.  

At the time of the beginning of this thesis, only few studies on the LM were performed in dogs 

(Ericsson et al., 2016; Roels et al., 2017c; Fastrès et al., 2017b), and factors able to change the canine 

LM were unknown. Accordingly, we first described the LM in healthy dogs, investigated factors 

known to alter it in other species and/or that could have an impact on our results on CIPF WHWTs. 

We also assessed the reliability of the 16S rDNA sequencing to study canine LM. Specifically, we 

aimed (1) to assess the short- and medium-term effect of a widely used oral antimicrobial drug on the 
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LM, as WHWTs and dogs with chronic respiratory diseases often have been treated or are being 

treated with antimicrobial drug at the time of their presentation; (2) to assess the LM in healthy dogs 

and study the impact of the breed and the living conditions on it in these dogs; and (3) to analyse the 

LM in dogs with an acute respiratory disease, the bordetellosis, and correlate results of the 16S rDNA 

amplicon sequencing with quantitative PCR (qPCR) and culture results, conventional techniques used 

to identify bacterial infection in dogs. 

We then aimed to investigate the LM in WHWTs affected with CIPF compared with healthy 

age-matched WHWTs and healthy dogs from other breeds in order to describe variations of the LM 

associated with the disease and potential variations of the LM associated with the WHWT breed which 

could potentially predispose to the disease. 

2. Assessment of macrophage clusters in canine bronchoalveolar lavage fluid 

In the second part of this work, we wished to study macrophage populations in CIPF dogs via 

an unbiased approach, the scRNA-seq. As said in the introduction, the technique is recent and allows 

high-throughput and high-resolution transcriptomic analysis of thousands of cells at the same time 

without prior cell markers knowledge (See et al., 2018; Poczobutt and Eickelberg, 2019; Stuart and 

Satija, 2019). The objective was to identify possible specific pro-fibrotic macrophage clusters, but also 

DEGs in diseased compared with healthy condition. We were interested in macrophages as they 

represent a large part of lung immune cells and they are the first cell in contact with lung bacterial 

communities. Moreover, in IPF studies, they are recognized to increase in number and to secrete high 

amount of pro-fibrotic molecules (O’Dwyer, Ashley and Moore, 2016; Desai et al., 2018; Zhang et al., 

2018). With the use of scRNA-seq, pro-fibrotic roles for macrophages were also described in IPF 

patients and IPF mouse models suggesting that targeting either specific macrophage and monocyte 

clusters, or macrophages products could be useful for IPF prevention and treatment (Heukels et al., 

2019). 

Therefore, our first aim was to validate the use of the scRNA-seq technique in BALF from 

healthy dogs. Indeed, the technique was quite recent and its use in dogs was not yet reported. 

Moreover, BALF cell populations were only phenotypically described by cytological examination and 

further BALF cell clusters were only investigated for lymphocytes by flow cytometry (Dirscherl et al., 

1995; Vail, Mahler and Soergel, 1995; Clercx et al., 2002; Out et al., 2002; Spużak et al., 2008; Finke, 

2013; Nelson and Couto, 2014). Accordingly, we also wished to provide an atlas of the canine BALF 

cells in healthy dogs which could be used after as a base resource for further investigations of the 

BALF cell subpopulations in disease conditions. Secondly, after validation of the scRNA-seq 

technique in canine BALF, we aimed to characterize using this tool disease-related heterogeneity 

within macrophage clusters in BALF from CIPF compared with healthy WHWTs.  
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Preamble 

The first part of the experimental section groups three studies related to the LM in dogs. 

Figure 10 represents a summary of principal results obtained in these studies. In all those studies, the 

same technique was used to obtain LM data (Figure 10). 

We first described the LM in healthy experimental and client-owned dogs and focused on 

factors able to affect the LM in healthy dogs (Figure 10) (Study 1 and study 2). We showed that oral 

antimicrobial drug administration changed the LM in a microbiologically predictable manner (Study 

1). The LM seemed to return at its initial stage 2 weeks after the last administration of the drug (Study 

1). In dogs, the living conditions, especially experimental compared with client-owned living 

conditions, had an impact on the LM and induced changes in bacterial richness and communities 

(Study 2). Discriminant taxa were identified in each canine breed, indicating also an impact of the 

breed on the LM (Study 2). However, no change in bacterial communities and ecological data were 

reported between breeds except in the WHWT breed (Study 2). Finally, we showed that in adult dogs, 

the age had no impact on the LM (Study 2). 

In diseased conditions, the LM was first studied in dogs affected with Bordetella 

bronchiseptica, a bacterial agent of the canine infectious respiratory disease complex (CIRD-C) and 

results were compared with conventional culture-based and qPCR ones. Good agreement was found 

between the 16S rDNA amplicon sequencing and the culture and the PCR results (Study 3). A 

dysbiosis was highlighted in CIRD-C compared with healthy dogs (Figure 10) (Study 3). Finally, LM 

was investigated in WHWTs affected with CIPF compared to healthy WHWTs and healthy dogs from 

other breeds. In WHWTs either healthy or affected with CIPF, the LM was quite similar. 

Brochothrix, Pseudarcicella, Curvibacter and a genus belonging to Flavobacteriaceae family were 

more abundant in WHWTs compared with healthy dogs from other breeds and more abundant in CIPF 

WHWTs compared with healthy WHWTs, although not significantly (Figure 10). Results were in 

favour of the hypothesis that the LM alterations in CIPF WHWTs are most likely related to the breed 

and might accordingly be among the factors able to predispose to CIPF (Study 2).    
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Figure 10. Obtention, composition and factors affecting the lung microbiota (LM) (Study 1-3). LM 

data were obtained from bronchoalveolar lavage fluid and assessed using the 16S rDNA amplicon 

sequencing technique targeting the V1-V3 region of the gene. After sequencing, bacterial communities 

were identified with an operational taxonomic unit clustering distance of 97% of homogeneity based 

on the SILVA v1.32 database. Bacterial load was obtained by quantitative polymerase chain reaction 

(qPCR) targeting the V2-V3 region of the 16S rDNA. Four major genera colonize the airways of the 

healthy lung: Cutibacterium, Streptococcus, Acinetobacter and Pseudomonas. In healthy condition, 

the microbial density in the lung is low. Factors such as living conditions, antimicrobials drug 

administration and breed can influence the microbiota composition. In dogs affected with canine 

infectious respiratory disease complex (CIRD-C), a dysbiosis characterized by an increase in 

bacterial load, a decrease in richness and diversity and the domination of B. bronchiseptica and/or M. 

cynos was highlighted compared with healthy dogs. In West Highland white terriers (WHWTs) 

affected with canine idiopathic pulmonary fibrosis (CIPF), the LM was enriched with Brochothrix, 

Pseudarcicella, Curvibacter and a genus belonging to Flavobacteriaceae family, similarly compared 

with healthy WHWTs, although in higher proportion. 
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Abstract 

Alterations of the lung microbiota (LM) are associated with clinical features in chronic lung 

diseases (CLDs) with growing evidence that an altered LM contributes to the pathogenesis of such 

disorders. The common use of antimicrobial drugs in the management of CLDs likely represents a 

confounding factor in the study of the LM. The aim of the present study was to assess the effect of oral 

administration of amoxicillin/clavulanic acid (AC) on the LM in healthy dogs (n = 6) at short 

(immediately after stopping AC [D10]) and medium-term (16 days after stopping AC [D26]).  

Metagenetic analyses were performed on the V1–V3 hypervariable region of 16S rDNA after 

extraction of total bacterial DNA from samples of bronchoalveolar lavage fluid (BALF).  

AC did not induce significant changes in BALF cellular counts or in the bacterial load or 

microbial richness, evenness and α-diversity, while the β-diversity was clearly modified at D10 

compared with D0 (before AC administration) and D26 (P < 0.01). The relative abundance of 

Bacteroidetes and Proteobacteria increased at D10 (P < 0.01) in comparison with D0 and D26 (P < 

0.01). The relative abundance of Firmicutes decreased from D0 to D10 (P < 0.01) and increased from 

D10 to D26 (P < 0.01), but was still lower than at D0 (P < 0.01). The proportion of Actinobacteria 

increased at D26 compared with D0 and D10 (P < 0.01).  

Significant differences between timepoints at the level of family, genus or species were not 

found. In conclusion, in healthy dogs, oral administration of AC induces significant changes in LM at 

the phyla level and in the β-diversity. Most changes normalize within 2 weeks after discontinuation of 

AC.   
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 Introduction  

The lung microbiota (LM) represents the collection of microbes from the lung (Segal et al., 

2014). In healthy people, the lung microbiota closely resembles that of the oral cavity, although the 

bacterial biomass is lower (Dickson et al., 2016). In order to study the LM, at least in healthy 

individuals, bronchoalveolar lavage (BAL) is considered to be an acceptable sampling method 

(Dickson et al., 2015). In the majority of human chronic lung diseases (CLDs), LM alterations have 

been associated with the disease (Costa et al., 2018). However, whether the LM alterations represent a 

cause or a consequence of the disease is still not clear (Fastrès et al., 2017a; Huang et al., 2017). In 

dogs, the LM has been studied much more recently than in man and the literature is sparse (Ericsson et 

al., 2016; Roels et al., 2017c). Ericsson et al. (2016) assessed the LM from samples of 

bronchoalveolar lavage fluid (BALF) in healthy adult experimental beagle dogs (Ericsson et al., 

2016). They found that the LM was dominated by the phylum Proteobacteria with a relative 

abundance of >80%. In parallel, the LM from BALF obtained in healthy adult experimental beagle 

dogs and client-owned dogs from another breed was studied (Roels et al., 2017c); results suggest a 

possible effect on the LM of breed and/or living conditions (Ericsson et al., 2016; Roels et al., 2017c). 

In man, the effect of antimicrobial drugs on the gut microbiota has been investigated and a 

decrease in richness, diversity and modification in up to 30% of the relative abundance of the taxa was 

shown (Zaura et al., 2015; Thiemann et al., 2016). Recently, the LM has been shown to be altered by 

antimicrobial treatment in mice (Dickson et al., 2018). To our knowledge, the effect of antimicrobial 

drugs on the LM in healthy individuals has not yet been investigated neither in man nor in dogs. 

In the context of the study of the LM alterations in CLD, and since canine patients with CLD 

often have been treated or are being treated with antimicrobial treatment at the time of referral, there is 

a need to know how antimicrobial drugs interfere with the LM. Moreover, the time delay needed after 

cessation of treatment, in order to avoid any interaction of the drug with the LM, has not yet been 

studied. Therefore, the aim of the present study was to assess the short- and medium-term effect of a 

widely used oral antimicrobial drug on the LM in healthy adult dogs. The results of the study should 

provide key information for further investigations of the role of the LM in canine CLDs.   



Chapter  3  Experimental section – Part 1 – Study 1 

  61 

Materials and methods  

1. Dog population 

Six healthy experimental beagle dogs (four females and two males) aged between 1 and 11 

years (mean 4.4 years), with a mean ± standard deviation body weight of 13.6 ± 1.3 kg, were included 

in the experimental study approved by the Ethical Committee of the University of Liège (protocol 

#1910). The dogs were housed on woodchip litter with outdoor access for 3–6 h each day. They had 

access to clean drinking water ad libitum and were fed with premium commercial dry food. There was 

no modification in the diet or the living conditions during the study period. The dogs did not receive 

any antimicrobial drug for at least 1 year prior to the study. At inclusion, the dogs were confirmed to 

be healthy, based on absence of clinical signs, normal physical examination, normal haematology and 

serum biochemistry analysis, normal gross appearance during bronchoscopy, and absence of 

abnormalities in the BALF analysis. 

2. Protocol 

For each dog, 20 mg/kg of amoxicillin/clavulanic acid (AC) (Amoxiclav-VMD, VMD, 

Arendonk, Belgium) was administered orally twice daily for 10 days. BALF sampling was repeated on 

each dog at three different timepoints: before AC administration (D0) and immediately (D10) as well 

as 16 days (D26) after discontinuation of AC. 

3. Samples collection and processing 

Dogs were anaesthetized without intubation. The bronchoscope was cleaned and disinfected 

before each use. A procedural control specimen (PCS) was obtained prior to each BAL procedure by 

injection of 10 mL of sterile saline solution through the bronchoscope channel followed by aspiration 

through the same channel into a sterile container using a low-power suction pump. The bronchoscope 

was then inserted through the oral cavity of the dog. The BAL was performed by injecting 3–4 mL/kg 

of sterile saline solution divided into three aliquots, including two aliquots with the endoscope inserted 

into the right diaphragmatic lobe, followed by a third aliquot placed into the left diaphragmatic lobe. 

Each aliquot was directly aspirated by gentle suction and the fluids recovered from the three aliquots 

were pooled. After sampling, both PCS and BALF were transferred into cryotubes and stored at -80C 

until analysis. A small amount of BALF was used for calculation of the total cell count (TCC) as well 

as for cytospin preparation (centrifugation at 221 g, for 4 min at 20C, Thermo Shandon Cytospin©4). 

Cytospin preparations were stained by Diff Quick and were used for differential cell count (DCC) 

determination by counting a minimum of 100 cells.   
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4. 16S rDNA extraction and high throughput sequencing 

The analysis of the LM for all dogs and for all 3 timepoints was performed on a single 

occasion for each step of the LM analysis which included DNA extraction, polymerase chain reactions 

(PCRs), sequencing and post-sequencing analysis. As required, strict laboratory controls were done to 

avoid contamination from the PCR reagents and laboratory materials. 

Total DNA was extracted from BALFs and PCSs using the DNEasy Blood and Tissue kit 

(QIAGEN Benelux BV, Antwerp, Belgium) according to the manufacturer's instructions. DNA was 

eluted into DNase/RNase free water for a total volume of 30μL and the concentration and purity were 

evaluated using an ND-1000 spectrophotometer (NanoDrop ND1000, Isogen, De Meern, The 

Netherlands). 

The bacterial load was assessed by quantitative PCRs (qPCRs) targeting the V2–V3 region of 

the 16S rDNA. Duplicate qPCRs were conducted in a final volume of 20 μL containing 2.5 μL of 

template DNA, 0.5 μL of forward primer (5’-ACTCCTACGGGAGGCAGCAG-3’; 0.5 μM), 0.5 μL 

of reverse primer (5’-ATTACCGCGGCTGCTGG-3’; 0.5 μM) [12], 10 μL of No Rox SYBR 2x 

MasterMix (Eurogentec, Seraing, Belgium), and 6.5 μL of water. The run also contained non-template 

controls and a 10-fold dilution series of a V2–V3 purified (Wizard®SV Gel and PCR Clean-Up 

System, Promega, Leiden, The Netherlands) PCR product quantified by PicoGreen targeting double-

stranded DNA (Promega, Leiden, The Netherlands) and used to build the standard curve. Data 

acquisition was obtained using an ABI 7300 real-time PCR system, with the following cycling 

sequence: 1 cycle of 50°C for 2 min; 1 cycle of 95°C for 10 min; 40 cycles of 94C for 15 s; and 1 

cycle of 60°C for 1 min. After the PCR, a melting curve was constructed in the range of 64–99°C. 

Results were expressed in logarithm base 10 copy numbers per millilitre. 

For bacterial identification, PCR targeting the V1–V3 region of the 16S rDNA was performed 

with the following primers: forward (5’-GAGAGTTTGATYMTGGCTCAG-3’) and reverse (5’-

ACCGCGGCTGCTGGCAC-3’) and Illumina overhand adapters (Ngo et al., 2018). Amplicons were 

purified with the Agencourt AMPure XP beads kit (Beckman Coulter, Villepinte, France) and 

submitted to a second PCR for indexing using the Nextera XT index primers 1 and 2. After 

purification, amplicons were quantified by PicoGreen (ThermoFisher Scientific, Waltham, MA, USA) 

before normalization and pooling. PCSs and the negative control from the extraction and the PCR 

steps were not sequenced as their PCR products after amplification were <1 ng/μL. Bacterial 16S 

rDNA amplicon libraries were then sequenced on a MiSeq Illumina sequencer using V3 reagents. A 

positive control using 20 defined bacterial species DNA was included in the run. Sequence read 

processing including a first cleaning step for length and sequence quality and a screening for chimera 

with UCHIME algorithm was made using, respectively, MOTHUR v1.39 and Vsearch (Edgar et al., 
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2011; Rognes et al., 2016). 16S rDNA reference alignment and taxonomical assignation with an 

operational taxonomic unit (OTU) clustering distance of 0.03 were based on the SILVA database 

v1.32 using the cluster.split command in MOTHUR v1.39 (Kozich et al., 2013). A final subsampling 

was performed to have an identical mean of reads per samples at 5,400 reads. 

5. Data analysis 

Comparisons between events for TCC, DCC and the bacterial load were made using Friedman 

tests in XLStat (Addinsoft, Paris, France). 

Good's coverage index and ecological indicators, including the bacterial richness (Chao1 

index), evenness (Simpson index-based measure) and α-diversity (inverse Simpson's index) were 

calculated with MOTHUR v1.39 and compared between timepoints using Friedman tests in XLStat. 

Non-metric multidimensional scaling (NMDS) graph was performed based on a Bray-Curtis 

dissimilarity matrix at the species level to assess the global bacterial composition (β-diversity) 

between timepoints (R vegan package). Significant differences between timepoints were calculated 

with MOTHUR v1.39 using AMOVA and HOMOVA tests. The AMOVA test is a non-parametric 

analysis for testing the hypothesis that genetic diversity within each timepoint is not significantly 

different from the genetic diversity in all timepoints together (Schloss, 2013). The HOMOVA test is a 

nonparametric analysis used to test the hypothesis that the genetic diversity within the different 

timepoints is homogeneous (Schloss, 2018). 

Differences in bacterial relative abundances between timepoints were assessed in R using a 

mixed linear model with Benjamini Hotchberg FDR correction for multiple comparisons.  

Results were expressed as median and interquartile range. 

All sample raw reads were deposited at the National Centre for Biotechnology Information 

(NCBI) and are available under Bioproject ID PRJNA507075.  
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Results 

1. BALF cell analysis 

There were no significant differences between timepoints for TCC and DCC (Table 1). 

Table 1. Median and interquartile range of the total and differential bronchoalveolar lavage fluid cell 

count between timepoints. 

Timepoints Total cell count 

cells/µL 

Macrophages 

% 

Neutrophils 

% 

Lymphocytes 

% 

Eosinophils 

% 

D0 800.0 (702.5-890.0) 82.5 (80.0-86.5) 5.5 (4.2-7.5) 6.0 (0.2-17.0) 2.0 (1.2-2.8) 

D10 470.0 (275.0-635.0) 92.0 (90.2-98.2) 3.0 (0-6.0) 0.5 (0-2.5) 1.5 (0.2-2.0) 

D26 220.0 (125.0-330.0) 78.0 (74.8-81.2) 5.0 (4.2-9.5) 9.0 (7.0-11.8) 0.5 (0-4.0) 

P-value between 

the 3 timepoints 

0.07 0.07 0.31 0.40 0.25 

D0, before antimicrobial drug administration; D10, just after antimicrobial drug discontinuation; 

D26, 16 days after antimicrobial drug discontinuation. 

2. BALF microbiota analysis 

Good's coverage index was >95.91% in all samples (98.74% (97.22–99.04)) and was not 

different between timepoints (P = 0.31) indicating the same sampling effort per timepoint. A total of 

2,236,209 reads were recovered with a median length of 498 nucleotides. After the first cleaning step, 

1,691,396 reads were kept and screened for chimera. 1,607,398 reads per samples were retained and 

used for OTU clustering before the final subsampling. 

The differences in the bacterial load between timepoints were not significant (P = 0.51) 

(Figure 1). In PCSs, the bacterial load was 2.46 (2.41–2.65) copies per millilitre; about 100 times 

lower than in the BALF samples. 

 

Figure 1. Box plot representing the logarithm of 

the number of 16S rDNA copies per microliter 

(bacterial load) between timepoints. The medians 

are represented by the central horizontal bars. The 

lower and upper limits of the box are the first and 

third quartiles, respectively. There were no 

significant differences between timepoints. 
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Phyla, families, genera and species making up the dog's LM, before AC administration, with a 

relative abundance of >1.00%, are presented in Table 2. 

Table 2. The top 25 most abundant taxa present in the lung microbiota at the level of phyla, families, 

genera and species in healthy dogs before administration of the antimicrobial drug. 

Phylum Family Genus Species Median relative 

abundance, % 

Firmicutes Streptococcaceae Streptococcus Streptococcus mitis 3.5 (2.1-4.1)  

   Streptococcus cristatus 0.5 (0.2-0.8) 

   Streptococcus salivarius 0.4 (0-1.0) 

 Staphylococcaceae Staphylococcus  Staphylococcus epidermidis 1.8 (1.7-2.7) 

   Staphylococcus warneri 0.8 (0.4-2.2) 

   Staphylococcus xylosus 0.5 (0.1-0.7) 

 Erysipelotrichaceae  Allobaculum Allobaculum HM124340 1.3 (0.1-3.5)  

   Allobaculum DQ113686 0.5 (0.2-1.3) 

   Allobaculum 16S_OTU48 0.3 (0-1.3) 

  Turicibacter Turicibacter FJ880353 0.3 (0.1-0.6) 

 Veillonellaceae Veillonella Veillonella JQ449520  1.1 (0.8-1.4)  

 Bacillales Family XI Gemella Gemella haemolysans 0.9 (0.4-1.0) 

Actinobacteria Propionibacteriaceae Propionibacterium Propionibacterium acnes 7.0 (5.2-17.0)  

 Corynebacteriaceae Corynebacterium_1 Corynebacterium_1 

tuberculostearicum  

1.1 (0.4-1.5) 

 Micrococcaceae Micrococcus Micrococcus luteus 0.6 (0.4-0.8)  

  Rothia Rothia mucilaginosa 0.6 (0.1-1.0) 

   Rothia dentocariosa 0.4 (0-0.9) 

Proteobacteria Moraxellaceae Acinetobacter Acinetobacter_johnsonii  0.4 (0.1-2.5)  

  Enhydrabacter Enhydrobacter_osloensis 0.4 (0.1-1.0) 

Bacteroidetes Flavobacteriaceae Flavobacterium Flavobacterium EU802240 0.7 (0.1-1.1)  

  Elizabethkingia Elizabethkingia miricola 0.6 (0.1-1.0) 

  Chryseobacterium Chryseobacterium haifense 0.4 (0-1.0) 

Fusobacteria Fusobacteriaceae Fusobacterium Fusobacterium AJ867041 0.6 (0-1.6)   

   Fusobacterium nucleatum 0.4 (0.1-0.9) 

Verrucomicrobia Verrucomicrobiaceae Verrucomicrobiaceae_ge Verrucomicrobiaceae_ge 

16S_OTU17  

0.8 (0.4-2.2) 

The relative abundances are presented in median and interquartile range. 

The bacterial richness, evenness and α-diversity were not significantly modified between 

timepoints (P = 0.31, 0.61 and 0.85 respectively) (Figure 2). 
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Figure 2. Box plot graphs representing the bacterial richness (A), evenness (B) and alpha diversity 

(C) at the 3 timepoints. The medians are represented by the central horizontal bars. The lower and 

upper limits of the box are the first and third quartiles, respectively. 

The NMDS graph of the β-diversity showed clear differences between D10 and the other 

timepoints (Figure 3). Significant differences were found between timepoints with the AMOVA test (P 

< 0.001) with significant differences in the post-hoc tests between D0 and D10 (P = 0.002) and D10 

and D26 (P < 0.001), but not between D0 and D26. The HOMOVA test showed significant differences 

between timepoints (P = 0.009) with significant difference in the post-hoc tests only between D10 and 

D26 (P = 0.004).  

 

 

 

 

 

 

 

 

Figure 3. Two-dimensional non-parametric representation of the global bacterial composition at the 

species level between timepoints for each dog based on a Bray-Curtis matrix of dissimilarity. Lung 

communities are clustered by timepoints. D0: before antimicrobial administration; D10: just after 

antimicrobial discontinuation; D26: 16 days after antimicrobial discontinuation; NMDS: non-metric 

multidimensional scaling. 
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Figure 4 illustrates the distribution of bacterial relative abundance at the phyla level in all dogs 

at the different timepoints. The Bacteroidetes (Figure 5A), the Proteobacteria (Figure 5B), the 

Firmicutes (Figure 5C) and the Actinobacteria (Figure 5D) were significantly different between 

timepoints. No significant differences were shown between timepoints at the level of families, genera 

and species. However, as shown in Figure 6, at D10, some genera decreased, such as Streptococcus 

spp. (Firmicutes), Staphylococcus spp. (Firmicutes) and Lactobacillus spp. (Firmicutes), others 

increased, such as Pseudomonas spp. (Proteobacteria), Flavobacterium spp. (Bacteroidetes) and 

Chryseobacterium spp. (Bacteroidetes), while some remained stable, such as Propionibacterium spp. 

(Actinobacteria). 

Figure 4. Phyla-level composition of bronchoalveolar lavage fluid (BALF) microbiota at the 3 

timepoints. Bar charts showing relative abundance annotated to the taxonomic level of phylum of all 

taxa detected in BALF collected from 6 healthy adult beagle dogs, before (D0) and 10 days (D10) as 

well as 16 days after the discontinuation of the drug. 
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Figure 5. Box plot graphs representing Bacteroidetes (A), Proteobacteria (B), Firmicutes (C) and 

Actinobacteria (D) relative abundances between timepoints. The means and the medians are 

represented by the cross and the central horizontal bars respectively. The lower and upper limits of 

the box are the first and third quartiles, respectively. Points are considered as outliers. 

***Statistically different (P<0.001). 
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Figure 6. Genus-level composition of bronchoalveolar lavage fluid (BALF) microbiota at the 3 

timepoints. Bar charts showing relative abundance annotated to the taxonomic level of genus of all 

taxa detected in BALF collected from 6 healthy adult beagle dogs, before (D0) and 10 days (D10) as 

well as 16 days after the discontinuation of the antimicrobial drug.  
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Discussion 

To the best of our knowledge, this is the first study in dogs investigating how an antimicrobial 

drug interferes with the LM. Since the use of antimicrobial drugs such as oral treatment with AC is 

common in the management of canine CLDs, this study is a prerequisite before assessing the role of 

alterations of the LM in the pathogenesis of canine CLDs. In the present study, oral administration of 

AC to healthy beagles induced an obvious shift in the β-diversity of the LM as well as significant 

changes in the proportion of the major phyla, and the majority of these changes were no longer present 

at 2 weeks after drug discontinuation. Furthermore, the bacterial load and the ecological indices of 

richness, evenness and α-diversity were not significantly modified.  

In the study of the LM, avoiding bacterial contamination is crucial, because of the low 

bacterial biomass of the respiratory tract (Dickson et al., 2016; Marsh et al., 2018). Amplification of 

contaminants could modify the data obtained and provide aberrant results (Salter et al., 2014). Origins 

of contamination can be numerous and may occur at different steps involving the laboratory analyses, 

the materials, mainly the bronchoscope, and the sampling procedure (Salter et al., 2014; Dickson et 

al., 2017a). In order to minimize contamination from extraction and sequencing reagents, strict 

laboratory controls of all reagents and machines were performed. PCSs were collected before each 

sampling in order to detect contamination via the bronchoscope itself, the sterile saline solution and 

the device used for the lavage. In the present study, analysis of PCSs indicated that this source of 

contamination could only minimally alter our results (Bassis et al., 2015). Finally, during the 

procedure, care was taken to avoid contact with the oropharyngeal, laryngeal and tracheal mucosae 

during insertion of the bronchoscope. In spite of these handling precautions, some contamination 

during passage of the bronchoscope through the upper airway cannot be excluded. However, it has 

been shown that such contamination only minimally alters the LM in bronchoscopically-acquired 

specimens (Bassis et al., 2015; Dickson et al., 2015; Dickson et al., 2017a).  

In the present study, the four major phyla (Firmicutes, Actinobacteria, Proteobacteria and 

Bacteroidetes) found in the lung of healthy beagles were the same as described in previous studies in 

beagles, although the abundance order differed (Ericsson et al., 2016; Roels et al., 2017c). The 

observed differences in relative abundance of major phyla can be attributed to several factors. Firstly, 

the LM largely depends on the environmental conditions (Dickson et al., 2016; Lloyd and Marsland, 

2017) and differences in housing, type of food, geographical area and dog behaviour may have had an 

impact on the LM (Dickson and Huffnagle, 2015; Dickson et al., 2016). Secondly, the technique used 

to sample and analyse BALF in the present study differs from that used by Ericsson et al. (2016), in 

which a catheter was passed through a sterile endotracheal tube to collect the BALF. In the present 

study the use of a bronchoscope was chosen, according to a technique that has been approved for 

investigation of the LM in man (Bassis et al., 2015). Finally, the relative abundance of Firmicutes in 
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this study compared with others performed on beagles was higher. This elevated percentage of 

Firmicutes might have been slightly overestimated because bacteria composing the Firmicutes phylum 

appear to have more 16S rDNA copies in their genome than bacteria in other phyla (Větrovský and 

Baldrian, 2013).  

In order to limit the variations between samples related to contamination or factors influencing 

the LM as mentioned above, the dogs in the present study were from the same breed, co-housed in a 

stable environment and fed with the same standardized diet. The sampling procedure was highly 

standardized and repeated identically at the three timepoints. Moreover, each step of the LM analysis 

(DNA extraction, PCRs, sequencing and post sequencing analysis) was performed at a single occasion 

for all samples together (from all dogs and from all 3 timepoints).  

The stability of the LM over time is an important source of experimental and clinical 

variability and might have interfered with our results. Indeed, it has been shown in mice, that the LM 

is dynamic and rapidly converges in cohoused mice placed in shared cages (Dickson et al., 2018). 

Dogs of our study were housed in the same conditions before and during the study period. As a 

consequence, it is reasonable to expect that such a stable environment helped to reduce time-induced 

variations.  

AC, a beta-lactam antimicrobial drug, is a broad-spectrum antimicrobial drug acting against 

Gram-positive and to a lesser extent Gram-negative bacteria (Kaur et al., 2011). AC was chosen as an 

antimicrobial agent since it is largely used by veterinarians in dogs with lower airway disease. 

Moreover, AC is a drug recommended in both human and veterinary medicine for the treatment of 

acute pneumonia, including acute aspiration pneumonia (File, 2007; Lappin et al., 2017). The dosage 

currently used in canine practice and recommended for pulmonary infections was used (Plumb, 2015).  

Significant modifications were found at the phyla level after AC administration. As expected, 

the Firmicutes phylum mainly represented by bacteria that are sensitive to AC decreased. The 

increased relative abundance in the phylum Proteobacteria appeared to be related to an increase in the 

genus Pseudomonas spp., which is known to be resistant to AC (Plumb, 2015). Finally, the main 

genera composing the phylum Bacteroidetes increased at D10 were Gram-negative bacteria which are 

less sensitive to AC (Kaur et al., 2011). According to these results and to the significant modification 

in the β-diversity shown just after discontinuation of the drug, AC appears to have an effect on the LM 

in healthy dogs, even if differences were not significant under the phyla level.  

Absence of significant differences in the relative abundances under the phyla level and in 

bacterial load, richness, evenness and α-diversity might be attributed to a possible high resilience of 

the LM to disturbances, compared with microbiota from other sites of the body. Such a hypothesis is 
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supported by the fact that differences in resilience of microbiota have been shown, according to their 

niche. For example, the salivary microbiota was shown to be more resilient to disturbance after 

antimicrobial drug administration compared to that of the gut (Zaura et al., 2015). Another explanation 

would be that in healthy individuals, such as the dogs in this study, the permeability of the alveolar-

capillary wall is lower than in diseased lungs (Brusse-Keizer et al., 2015), leading to a limited 

penetration of AC into the parenchyma and airways and therefore a limited effect on the LM. Indeed, 

it has been shown that amoxicillin concentration in the sputum in man may differ according to 

different host- and drug-related factors, such as alveolar-capillary permeability (Pennington, 1981; 

Honeybourne, 1994). As alveolar-capillary permeability increases in the case of inflammation, the 

concentration of AC, which passively diffuses in the alveolar space (Honeybourne, 1994), is probably 

decreased in healthy airways. It should be remembered that the use of another antimicrobial drug with 

improved airways penetration could have induced different LM modifications.  

The inability to highlight significant differences under the phyla level might also be due to the 

number of data, including about 5,400 sequences per sample, as well as to the limited number of dogs 

included in the study. This contributed to a lack of power of the statistical tests mainly associated with 

the corrections for multiple tests more significant with a large dataset (Desquilbet, 2015).  
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Conclusion 

In summary, in healthy dogs, oral administration of a commonly used broad-spectrum 

antimicrobial drug induced significant changes in the pulmonary microbial population and the 

majority of these changes were no longer present at 2 weeks after the discontinuation of the drug. As a 

consequence, for investigation of associations between the LM and CLDs in dogs, discontinuance of 

any antimicrobial medication at a minimum of 2 weeks before sampling is advised. However, further 

studies are warranted to investigate the effect of other antimicrobial drugs and to identify the optimal 

delay between antimicrobial drug discontinuation and sampling, in order to avoid any interference 

with the LM analysis.  
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Abstract 

Literature about the lung microbiota (LM) in dogs is sparse. Influence of breed and living 

conditions on the LM in healthy dogs is currently unknown, as well as the influence of chronic 

respiratory diseases such as canine idiopathic pulmonary fibrosis (CIPF) in West highland white 

terriers (WHWTs). Aims of this study were (1) to assess the characteristics of the healthy LM 

according to breed and living conditions, and (2) to study LM changes associated with CIPF in 

WHWTs. Forty-five healthy dogs divided into 5 groups: domestic terriers (n = 10), domestic shepherds 

(n = 11), domestic brachycephalic dogs (n = 9), domestic WHWTs (n = 6) (H-WHWTs) and 

experimental beagles (n = 9) and 11 diseased WHWTs affected with CIPF (D-WHWTs) were included 

in the study to achieve those objectives. 

In healthy domestic dogs, except in H-WHWTs, the presence of few discriminant genera in 

each type of breed was the only LM modification. LM of experimental dogs displayed a change in b-

diversity and an increased richness compared with domestic dogs. 

Moreover, Prevotella_7 and Dubosiella genera were more abundant and 19 genera were discriminant 

in experimental dogs. LM of both H-WHWTs and D-WHWTs revealed increased abundance of 6 

genera (Brochothrix, Curvibacter, Pseudarcicella, a genus belonging to Flavobacteriaceae family, 

Rhodoluna and Limnohabitans) compared with other healthy domestic dogs. 

Brochothrix and Pseudarcicella were also discriminant in D-WHWTs compared with H-WHWTs and 

other healthy domestic dogs. 

In domestic conditions, except for H-WHWT, the breed appears to have minor influence on 

the LM. LM modifications were found in experimental compared with domestic living conditions. LM 

modifications in H-WHWTs and D-WHWTs compared with other healthy domestic dogs were similar 

and seemed to be linked to the breed. Whether this breed difference might be related with the high 

susceptibility of WHWTs for CIPF requires further studies.  
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Introduction 

The term “microbiota” refers to all the bacteria that are found in a particular region or habitat 

(Segal et al., 2014). While the lung has been for long considered sterile, it is now well recognized that 

it hosts a diverse, low biomass bacterial population (Dickson et al., 2016). The lung microbiota (LM) 

in healthy experimental dogs is composed of a microbial population similar to the one in heathy 

humans, with major phyla including Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes 

(Ericsson et al., 2016; Roels et al., 2017c; Fastrès et al., 2019). In a pilot study from Roels et al. 

(2017), based on a limited number of dogs, LM differences were found between healthy experimental 

beagles (n = 6) and healthy client-owned West Highland white terriers (WHWTs) (n = 5) suggesting a 

possible association with the breed and/or the living conditions. In the same study, differences in the 

LM were also highlighted between healthy client-owned WHWTs and WHWTs affected with canine 

idiopathic pulmonary fibrosis (CIPF) (n = 7) suggesting an influence of the disease on the LM. 

Whether the LM varies according to the type of breed in dogs is unknown. We hypothesize 

that inter-breed differences in genetic, morphological or physiological characteristics, or in breathing 

pattern could alter the LM which might be among the factors that favour lower airway diseases with 

breed predisposition. 

The living conditions are suspected to play a role in the LM, although it has not yet been 

investigated in dogs. Indeed, the respiratory tract is in constant contact with the external environment 

which is known to be one of the factors that impacts the LM (Dickson et al., 2016). The influence of 

the living conditions on the LM has been specifically studied in horses and mice (Dickson et al., 2018; 

Fillion-Bertrand et al., 2018). In horses, it has been shown that lung communities are more similar 

between horses living in the same environment than living in different areas (Fillion-Bertrand et al., 

2018). In mice, the LM clusters highly by cage, shipment and vendor suggesting a clear impact of the 

living conditions (Dickson et al., 2018). The living conditions could then represent an important 

source of variations of the LM and might also be among the factors able to predispose to lung diseases 

in dogs as it has been shown for asthma in human medicine for example (Chung, 2017; Karvone et al., 

2019; Ver Heul et al., 2019). 

CIPF is a poorly understood parenchymal lung disease mimicking notably idiopathic 

pulmonary fibrosis (IPF) in man. CIPF affects old dogs of the WHWTs breed, suggesting a breed 

predisposition for the disease (Heikkila-Laurila and Rajamaki, 2014; Clercx et al., 2018). In man, 

numerous studies have been published supporting the hypothesis that the LM could be a trigger or a 

perpetuation factor in IPF (Dickson and Huffnagle, 2015; O’Dwyer et al., 2016; Hewitt and 

Molyneaux, 2017; Molyneaux et al., 2017b). In dogs, the alteration of the LM in CIPF dogs has not 

yet been investigated in a large number of animals. 



Chapter  3  Experimental section – Part 1 – Study 2 

  83 

The aims of this study were to assess [1] differences in the LM associated with the breed and 

the living conditions in healthy dogs; and [2] the LM alterations associated with CIPF in the WHWT 

breed. Therefore, the LM of healthy dogs from different breeds and living conditions was compared. 

Additionally, the LM of WHWTs affected with CIPF was compared with the LM of healthy WHWTs 

and of domestic dogs from other breeds.  



Chapter  3  Experimental section – Part 1 – Study 2 

  84 

Results 

1. Influence of the breed on the LM 

A total of 45 healthy adult dogs were included in the study and categorized into 5 groups 

according to the type of breed: terriers (T), shepherds (S), brachycephalic dogs (Br), WHWTs (H-

WHWTs) and beagles (ExpB). Groups’ characteristics are reported in the Table 1. No age differences 

were found between groups (P = 0.052). 

Table 1. Characteristics of the groups according to the type of breed. 

 T S Br H-WHWT  ExpB 

N 10 11 9 6 9 

Sex 

(M/F) 

6/4 3/8 5/4 4/2 4/5 

Age, yr  7.01 (6.05-8.57) 6.96 (4.34-7.33) 3.61 (1.43-4.49) 8.68 (7.65-10.11) 4.82 (2.95-10.85) 

Weight, 

kg  

6.80 (5.55-9.18) 
a,b

 

27.90 (23.35-

31.15)
 a,c,d

 

11.90 (9.50-

13.30) 
c
 

9.40 (8.65-9.70) 
d
 13.80 (12.70-16.20)

 b
 

Breeds 7 Jack Russel 

terriers, 3 

Yorkshire 

terriers 

5 Belgian 

Malinois, 3 

Australian 

shepherds and 1 

white Swiss 

shepherd, 2 

border collies  

6 French and 1 

English 

bulldogs, 1 pug, 

1 Cavalier King 

Charles spaniel 

WHWTs Beagles 

Data are expressed as median and interquartile range. Superscript letters reflect paired statistical 

difference (P < 0.002) according to Kruskal-Wallis and Dunn post-hoc tests. M, male; F, female; T, 

terriers group; S, shepherds group; Br, brachycephalic dogs group; H-WHWT: healthy West 

Highland white terriers group; ExpB, experimental beagles group. 

The bacterial load in bronchoalveolar lavage fluids (BALFs) was not significantly different 

between the types of breeds (P = 0.22) (Figure 1A). 

Bacterial richness (Figure 1C) was significantly higher in ExpB than in T and S groups, but 

there were no differences for the α-diversity and the evenness between groups (Figures 1B and 

D; P = 0.87 and 0.14 respectively). The β-diversity (Figure 1E) was different between the groups 

(P = 0.002) with differences between ExpB and T, S and Br (P = 0.04, 0.01 and 0.05 respectively). 

Four major phyla were shared between the groups, including in descending order, 

Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. At the genus level, inter-individual 

variability was observed between the dogs (Figure 1G)) and a lot of genera were present in very small 

proportions (i.e., < 0.05%). The 10 most abundant genera in median across groups 

were Cutibacterium, Staphylococcus, Streptococcus, Pseudomonas, Corynebacterium_1, 

Pasteurellaceae genus, Acinetobacter, Conchiformibius, Flavobacterium and Porphyromonas. Taken 
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together, all these genera represented 22.96% (9.59–56.64) of the global relative abundance across the 

groups. The linear discriminant analysis (LDA), used to determine the genera most likely to explain 

the differences between the groups (Segata et al., 2011), revealed a total of 29 genera, 1 in T, 2 in S, 1 

in Br, 9 in H-WHWT and 16 in ExpB, which were discriminant between the groups (Figure 1F). 

Significant differences in the relative abundance of the taxa at the genus level were only found 

between H-WHWTs and the other groups and are reported in the Table 2. 

Table 2. Relative abundance of taxa at the genus level significantly different between the type of 

breed. 

Results were expressed as median percentage of the relative abundance and interquartile range. 

Superscript letters reflect paired statistical difference by raw according to Kruskal-Wallis and Tukey 

post hoc tests. T group: terrier dogs; S group: shepherd dogs; Br group: brachycephalic dogs; H-

WHWT: healthy West Highland white terrier dogs; ExpB group: experimental beagle dogs.  

Genus T S Br H-WHWT ExpB P-value 

Brochothrix  0% 
a
 0% 

b
 0% 

c
 0.28% (0.05-0.45) 

a,b,c
 0% (0-

0.04) 

a,c
 P < 0.05 

b 
P < 0.01 

Limnohabitans  0%
 a
 0%

 b
 0%

 c
 0.24% (0.06-0.39) 

a,b,c,d
 0%

 d
 

a,b,c
 P < 0.01 

d
 P < 0.05 

Rhodoluna 0%
 a
 0%

 b
 0%

 c
 0.45% (0.09-0.95)

 a,b,c,d
 0%

 d
 

a
 P < 0.001 

b,c
 P < 0.01 

d
 P < 0.05 

Curvibacter  0%
 a
 0%

 b
 0%

 c
 0.06% (0.01-0.10)

 a,b,c,d
 0%

 d
 

a,b,c
 P < 0.001 

d
 P < 0.01 

Pseudarcicella 0%
 a 

0%
 b 

0%
 c 

0.20% (0.05-0.23)
 a,b,c,d

 0%
 d
 

a,b,c
 P < 0.01 

d
 P < 0.05 

Sporichthyaceae genus 0%
 a 

0%
 b 

0%
 c 

0.11% (0.01-0.18)
 a,b,c,d

 0%
 d a,b,c

 P < 0.001 
d
 P < 0.05 
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Figure 1. Influence of the type of breed on the lung microbiota. The influence of the type of breed on 

the lung microbiota was evaluated by comparison between 5 groups including domestic terrier dogs 

(T), domestic shepherd dogs (S), domestic brachycephalic dogs (Br), healthy domestic West Highland 

white terriers (H-WHWTs) and experimental beagles (ExpB). The parameters studied to assess the 

lung microbiota included; the bacterial load (A), the α-diversity (B), the richness (C), the evenness 

(D), the β-diversity (E) represented by a non-metric multidimensional scaling (NMDS) graph based on 

a Bray-Curtis matrix and the linear discriminant analysis (LDA) where only significant genera were 

represented (F). The distribution of the relative abundance of taxa at the genus level for each dog in 

each type of breed concerned only genera of more than 0.05% (G). *P = 0.002, **P = 0.001. 
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2. Influence of the living conditions on the LM 

The LM has been then compared between dogs living in experimental versus domestic 

conditions. Domestic conditions were further divided into rural and urban conditions based on owner’s 

information. The same 45 dogs included in the first part of this study were used and re-categorized 

into the three living conditions (Table 3). No age difference was reported between groups. 

Table 3. Characteristics of the groups according to the living condition. 

Data are expressed as median and interquartile range. M, male; F, female; T, terriers group; S, 

shepherds group; Br, brachycephalic dogs group; H-WHWT: healthy West Highland white terriers 

group; ExpB, experimental beagles group. 

The bacterial load (Figure 2A) was not significantly different between the living conditions 

(P = 0.24). 

There were no differences between living conditions for the α-diversity and the evenness 

(Figures 2B and D; P = 0.93 and 0.24 respectively). The richness was higher in experimental 

compared with rural and urban conditions (Figure 2C). The β-diversity (Figure 2E) was different 

between the groups (P = 0.001) with significant differences between experimental and rural and 

between experimental and urban conditions (P = 0.003 and 0.039 respectively). No significant 

difference in the β-diversity was present between rural and urban conditions (P = 0.92). The LDA 

revealed a total of 22 genera, 1 in rural, 2 in urban and 19 in experimental conditions, which were 

discriminant between living conditions (Figure 2F). Significant differences found between living 

conditions in the relative abundance of the taxa at the genus level are reported in the Table 4. 

Table 4. Relative abundance of taxa significantly different between the living conditions. 

Genera Rural Urban ExpB 

Prevotella_7 0% (0-0.002) 
a 

0% 
b 

0.23% (0.18-0.33) 
a,b

 

Dubosiella  0% 
a 

0% 
b 

0.04% (0-0.53) 
a,b

 

Results were expressed as median percentage of the relative abundance and interquartile range. 

Superscript letters reflect paired statistical difference by raw (P < 0.05) according to Kruskal-Wallis 

and Tukey post hoc tests. ExpB, experimental beagle dogs. 

 Rural Urban ExpB 

N 20 16 9 

Sex (M/F) 8/12 8/8 4/5 

Age, yr  7.01 (3.70-7.79) 6.58 (3.36-7.93) 4.82 (2.95-10.85) 

Weight, kg  9.65 (7.10-13.45) 16.50 (9.70-29.08) 13.80 (12.70-16.20) 

Breeds repartition T: 9/10, S: 5/11, Br: 

4/9, H-WHWT: 2/6 

T: 1/10, S: 4/11, Br: 

5/9, H-WHWT: 4/6 

ExpB: 9/9 
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Figure 2. Influence of the living conditions on the lung microbiota. The influence of the living 

conditions on the lung microbiota was evaluated by comparison between domestic dogs living either 

in rural or urban condition and experimental beagle dogs (ExpB). The parameters studied to assess 

the lung microbiota included; the bacterial load (A), the α-diversity (B), the richness (C), the evenness 

(D), the β-diversity (E) represented by a non-metric multidimensional scaling (NMDS) graph based on 

a Bray-Curtis matrix and the linear discriminant analysis (LDA) where only significant genera were 

represented (F). *P = 0.017, **P = 0.015. 

3. The LM in CIPF WHWTs 

To assess the LM in dogs affected with CIPF, we compared 11 WHWTs affected with CIPF 

(D-WHWTs) with age-matched healthy WHWTs and with all the other healthy domestic dogs (T, S 

and Br). The clinical characteristics of the groups are reported in the Table 5. 
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Table 5. Characteristics of the groups according to the disease status. 

 Healthy domestic dogs 

other than WHWTs 

H-WHWTs D-WHWTs 

N 30 6 11 

Sex (M/F) 14/16 4/2 4/7 

Age, yr 6.25 (3.53-7.39)
 a
 8.68 (7.65-10.11) 11.52 (10.51-12.33)

 a
 

Weight, kg 12.45 (7.68-23.68) 9.40 (8.65-9.70) 9.5 (9.25-10.45) 

Data are expressed as median and interquartile range. Superscript letters reflect paired statistical 

difference (P < 0.0001) according to Kruskal-Wallis and Dunn post hoc tests. H-WHWTs: healthy 

West Highland white terriers; D-WHWTs: West Highland white terriers affected with canine 

idiopathic pulmonary fibrosis; M, male; F, female; BALF, bronchoalveolar lavage fluid. 

The bacterial load (Figure 3A) was not different between the groups (P = 0.88). 

There were no differences between groups for the α-diversity and the evenness (Figures 3B 

and D; P = 0.86 and 0.13 respectively). The richness was significantly higher in H-WHWTs compared 

with healthy domestic dogs other than WHWTs (Figure 3C). The β-diversity (Figure 3E) was 

significantly different between the groups (P = 0.001) with significant differences only between D-

WHWTs and healthy domestic dogs other than WHWTs (P = 0.003). No difference in the β-diversity 

was present between D-WHWTs and H-WHWTs (P = 0.18) and between H-WHWTs and healthy 

domestic dogs other than WHWTs (P = 0.13). 

The LDA revealed a total of 13 genera, 1 in healthy domestic dogs other than WHWTs, 7 in 

H-WHWT and 5 in D-WHWT, which were discriminant between groups (Figure 3F). Significant 

differences found between the groups in the relative abundance of the taxa at the genus level are 

reported in the Table 6.   
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Table 6. Relative abundance of taxa significantly different between the disease status. 

Genera Healthy domestic 

dogs other than 

WHWTs 

H-WHWTs D-WHWTs P-value 

Limnohabitans 0% 
a,c

 0.24% (0.06-0.39) 
a,b 

0.14% (0.06-0.34) 
b,c

 
a 
P < 0.001 

b 
P < 0.01

 

c 
P < 0.05

 

Brochothrix 0% 
a,b

 0.28% (0.05-0.45) 
a 

0.5% (0.29-0.92) 
b
 

a 
P < 0.01 

b 
P < 0.001

 

Curvibacter 0% 
a,b

 0.06% (0.01-0.10) 
a 

0.07% (0-0.12) 
b
 

a 
P < 0.05 

b 
P < 0.001

 

Rhodoluna 0% 
a,c

 0.45% (0.09-0.95) 
a,b 

0.27% (0.06-0.70) 
b,c

 
a 
P < 0.001 

b,c 
P < 0.05

 

Pseudarcicella 0% 
a,b

 0.20% (0.05-0.23) 
a 

0.34% (0.04-0.58) 
b
 

a 
P < 0.01 

b 
P < 0.001

 

Genus belonging to 

Sporichthyaceae family 

0% 
a
 0.11% (0.01-0.18) 

a
 0.10% (0-0.22) 

a 
P < 0.01 

Genus belonging to Candidatus 

Nomurabacteria phylum 

0% 
a
 0.16% (0.02-0.37) 

a,b 
0.06% (0.02-0.09) 

b
 

a,b 
P < 0.001 

Serratia 0% (0-0.02) 
a
 0.42% (0.18-1.60) 

a
 0.03% (0-0.13) 

a 
P < 0.05 

Genus belonging to 

Flavobacteriaceae family 

0.01% (0-0.03) 
a,b

 0.23 (0.04-0.47) 
a 

0.26% (0.09-0.37) 
b
 

a 
P < 0.001 

b 
P < 0.05

 

Results were expressed as median percentage of the relative abundance and interquartile range. 

Superscript letters reflect paired statistical difference by raw according to Kruskal-Wallis and Tukey 

post hoc tests. H-WHWTs, healthy West Highland white terriers; D-WHWTs, West Highland white 

terriers affected with canine idiopathic pulmonary fibrosis. 
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Figure 3. The lung microbiota in West Highland white terrier affected with canine idiopathic 

pulmonary fibrosis (CIPF). The influence of CIPF on the lung microbiota was evaluated by 

comparison between healthy domestic dogs from different breeds (healthy dogs), healthy West 

Highland white terriers (H-WHWTs) and WHWTs affected with CIPF (D-WHWTs). The parameters 

studied to assess the lung microbiota included; the bacterial load (A), the α-diversity (B), the richness 

(C), the evenness (D), the β-diversity (E) represented by a non-metric multidimensional scaling 

(NMDS) graph based on a Bray-Curtis matrix and the linear discriminant analysis (LDA) where only 

significant genera were represented (F). *P = 0.007. 
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Discussion 

Results of the present study revealed that in healthy dogs, except for H-WHWTs and ExpB, 

the impact of the type of breed only seemed to concern the presence of few discriminant genera in 

each group. The LM in dogs living in experimental condition compared with the LM in dogs living in 

domestic condition was characterized by a change in the β-diversity with an increase of the bacterial 

richness. Moreover, Prevotella_7 and Dubosiella genera were found in higher relative abundance and 

19 genera were identified as discriminant in experimental compared with domestic living conditions. 

The LM in WHWTs either healthy or affected with CIPF was quite similar. In the LM of both healthy 

and diseased WHWTs, 6 genera were more abundant compared with the LM of healthy domestic dogs 

other than WHWTs and included Brochothrix, Curvibacter, Pseudarcicella, a genus belonging to 

Flavobacteriaceae family, Rhodoluna and Limnohabitans. Brochothrix and Pseudarcicella genera 

were also identified as discriminant genera in D-WHWTs. 

In all samples from healthy dogs, four major phyla were detected, including in descending 

order, Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. These four phyla are the same as 

those reported in previous studies in dogs  (Ericsson et al., 2016; Roels et al., 2017c; Fastrès et al., 

2019) and also correspond to the major phyla found in the human LM, although not in the same order; 

in man Bacteroidetes and Firmicutes are the 2 most abundant (Dickson et al., 2016). Cutibacterium 

(previously named Propionibacterium), Staphylococcus, Streptococcus, Pseudomonas, 

Corynebacterium_1, Pasteurellaceae genus, Acinetobacter, Conchiformibius, Flavobacterium and 

Porphyromonas were the most abundant genera across all healthy dogs and represented together 

22.96% of the LM at the genus level. Among these genera, Pasteurellaceae genus, Pseudomonas, 

Acinetobacter, Cutibacterium, Streptococcus and Porphyromonas were also found in high relative 

abundance in the study from Ericsson et al. (2016). In another study, the genera Cutibacterium, 

Streptococcus, Staphylococcus, Pseudomonas, Corynebacterium_1 and Acinetobacter were part of the 

10 most abundant genera composing the LM (Fastrès et al., 2019). We therefore propose that the core 

genera of the LM in healthy dogs include at least the genera Cutibacterium, Streptococcus, 

Acinetobacter and Pseudomonas. Cutibacterium and Streptococcus genera contain Gram-positive 

anaerobic and aero-anaerobic bacteria respectively (Abranches et al., 2018; Dréno et al., 2018). In the 

study from Ericsson et al. (2016), Cutibacterium genus was only found in BALF samples, not in nasal, 

oropharyngeal and faeces swabs. Cutibacterium genus is also commonly found in the healthy skin 

microbiota where it plays a role in skin homeostasis and in the protection against other harmful 

pathogen notably by pH reduction (Dréno et al., 2018). Streptococcus was reported as one of the main 

genera colonizing the oral and the lung microbiota in healthy but also in diseased patients (Ericsson et 

al., 2016; Abranches et al., 2018; Wypych et al., 2020). Different strains of Streptococcus exist 

specialized in carbohydrate catabolism and environment acidification. Moreover, Streptococcus 
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bacteria possess multiple high-affinity adhesins that mediate binding and biofilm formation preventing 

the growth of other potentially pathogen bacteria (Abranches et al., 2018). Bacteria in those 2 genera 

could exert same functions in the lung. Pseudomonas and Acinetobacter genera contain aerobic Gram-

negative bacteria belonging to the Proteobacteria phylum. Pseudomonas genus represents a diverse 

group of bacteria characterized by a high ability to grow preventing the growth of other potentially 

pathogen bacteria and a capacity to produce and degrade a number of compounds including toxic 

materials for the host (Novik et al., 2015). Acinetobacter bacteria could play an anti-inflammatory role 

in the LM. Indeed, a link was found between IL10 production, an anti-inflammatory cytokine, and 

Acinetobacter in asthma and atopic dermatitis (Wypych et al., 2020). However, Streptococcus, 

Acinetobacter and Pseudomonas genera are also involved in chronic infections particularly in 

ventilated patient and patient affected with chronic lung diseases. Knowing their capacity to form 

biofilms and resist to antimicrobial drugs (Antunes et al., 2011; Novik et al., 2015; Abranches et al., 

2018; Ciofu and Tolker-Nielsen, 2019; Wypych et al., 2020); indeed, in dogs under antimicrobial 

treatment It has been shown that Pseudomonas relative abundance increased (Fastrès et al., 2019); it is 

important to take into account that those bacteria might be part of the core LM in dogs. 

1. Influence of the type of breed on the LM 

The results of the LDA showed that few genera were identified as discriminant between 

groups of breeds, the number of discriminant taxa being more important in ExpB and H-WHWTs. No 

other modifications of the LM including in the relative abundance of the taxa, the bacterial load and 

the ecological parameters (diversity, richness and evenness) were identified between the groups except 

in ExpB and H-WHWTs. Those data indicate that in domestic healthy dogs other than WHWTs, the 

different types of breeds minimally alter the LM. That fact might be of interest when interpreting data 

about the microbiota in dogs from various breeds. The slight breed influence on the LM found in that 

study could be due to differences in the genetic or the morphology of the breeds as it has been shown 

in the gut where modification of the bacterial populations were described in relation with the dog’s 

size (Simpson et al., 2002). Since a clear link has been established between the gut microbiota and the 

LM (Anand and Mande, 2018), an influence, even slight, of the breed on the LM is not a surprising 

finding. Additional explanations for differences in LM encountered between breeds include 

differences in airways and lung anatomy and breathing strategy (Amis and Kurpershoek, 1986). 

Of note, the fact that we included several breeds in the T, S and Br groups could have 

potentially masked certain breed-related differences. Moreover, it is also possible that the number of 

dogs included in each group was not sufficient to show more differences in the LM.  
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2. Influence of the living conditions on the LM 

The differences found between experimental and domestic living conditions overlap the 

influence of both the type of breed and the living conditions, as we were unable to recruit beagle dogs 

living in domestic conditions. In ExpB compared with T, S and Br, the β-diversity was different, the 

richness was higher and 16 discriminant genera were identified. When comparing dogs based on the 

living conditions (experimental vs domestic either rural or urban), similar changes were found; the β-

diversity was different and the richness higher in experimental compared with domestic living 

conditions. More discriminant genera were identified in experimental conditions, 

including Prevotella_7 and Dubosiella also found in higher relative abundance in experimental 

compared with domestic living conditions. Accordingly, we believe that the modifications of the LM 

in ExpB are most likely due to the living conditions rather than the breed. The importance of the close 

living conditions on the LM has already been reported in mice, where the LM highly clusters by cage, 

shipment and vendor (Dickson et al., 2018) and in horses where lung communities are more similar 

between horses in the same environment than across environments (Fillion-Bertrand et al., 2018). In 

ExpB, the majority of the discriminant genera identified such as Lactobacillus, Prevotella 7, 

Turicibacter, Verrucomicrobiaceae genus and Erysipelotrichaceae genus, are bacteria living in the 

intestinal tract and found in dog’s stools (Hooda et al., 2012). The presence of these bacteria might be 

linked to the living conditions of ExpB. Indeed, ExpB are housed by group on litter, in close contact 

with faeces and they frequently exhibit a coprophagy behaviour. Ingestion and sniffing of faeces 

present in the direct environment of dogs most probably influence their LM as it results mainly from 

microaspiration, inhalation and direct dispersion along respiratory mucosa (Dickson et al., 2016). 

In domestic dogs, we did not show differences related to the fact that dogs were living mainly 

in either rural or urban area. However, it must be noted that this study was not designed to specifically 

assess the effect of such differences. Indeed, living areas in domestic dogs were arbitrary determined 

based on owner’s information. Additionally, if the global environment (rural or urban) of the domestic 

dogs was different, the housing conditions were quite similar when animals were inside house. By 

contrast, living conditions between experimental and domestic dogs strongly differed. 

3. The LM in CIPF WHWTs 

Brochothrix, Curvibacter, Pseudarcicella and a genus belonging to Flavobacteriaceae family 

were found in higher relative abundance in healthy and diseased WHWTs compared with other 

healthy domestic dogs. Moreover, those genera were more abundant in D-WHWTs compared with H-

WHWTs although not significantly. Brochothrix and Pseudarcicella genera were also discriminant for 

D-WHWTs. Rhodoluna and Limnohabitans genera were also found in higher relative abundance in 

WHWTs compared with domestic dogs from other breeds, but were higher in H-WHWTs than in D-
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WHWTs. These bacteria preferentially contaminate food (Brochothrix (Stanborough et al., 2017)) and 

water (Curvibacter (Ding and Yokota, 2010), Rhodoluna (Hahn et al., 

2014), Limnohabitans (Kasalický et al., 2013), and genera belonging to Flavobacteriaceae family 

(McBride, 2014)), and can be ingested by dogs. Their presence in the LM of WHWTs could be 

associated with the higher abundance of gastroesophageal reflux reported in that breed compared with 

other breeds (Määttä et al., 2018). The higher rate of gastroesophageal reflux in WHWTs has been 

hypothesized to play a role in the onset and/or in the progression of CIPF (Määttä et al., 2018). In 

man, gastroesophageal reflux is associated with IPF although the role of these exposures in the 

pathogenesis of IPF is still only hypothetical (Bédard Méthot et al., 2019). 

A pathogenic role of Rhodoluna, Limnohabitans Brochothrix, Curvibacter, Pseudarcicella and 

genera belonging to Flavobacteriaceae family in the lung has only been reported for bacteria of the 

Flavobacteriaceae family (McBride, 2014). Indeed, some genera of the Flavobacteriaceae family, are 

known as opportunistic pathogen notably in human and animal such as Elizabethkingia spp. for 

example (McBride, 2014). Bacteria of the Flavobacteriaceae family present different mechanisms of 

pathogenicity including cellular adhesion, gliding motility, proteolytic activity and resistance to 

immune system and antimicrobial drug (McBride, 2014). Bacteria of the Curvibacter genus can 

expressed genes involved in carbon metabolism and fatty acid degradation, which is useful for the 

colonization of the mucus layer present in the lung (Pietschke et al., 2017). They also had a flagellar 

structure able to promote their motility, their adherence and their penetration of mucosal barriers but 

also able to act as an activator of the immune system via Toll-like receptor signalling (Ding and 

Yokota, 2010; Pietschke et al., 2017). Therefore, the presence in the LM of WHWTs of these 2 genera 

could activate the immune system, alter the airway epithelium and induce or perpetuate the airway 

inflammation in CIPF. Little is known about the metabolism and the potential pathogenic role of 

bacteria of the Brochothrix, Pseudarcicella, Rhodoluna and Limnohabitans genera (Kämpfer et al., 

2012; Kasalický et al., 2013; Hahn et al., 2014; Stanborough et al., 2017; Lorenzo et al., 2018; Cruaud 

et al., 2020). 

Data of the present study showed that both healthy and CIPF WHWTs had a distinct 

microbiota compared with other healthy domestic dogs. The majority of the genera found in higher 

relative abundance in H-WHWTs compared with other healthy domestic dogs were also found in 

higher relative abundance in D-WHWTs. This is in favour of the hypothesis that the LM modifications 

in WHWTs are most likely related to the breed. Accordingly, the LM might be among the factors able 

to predispose to CIPF. That hypothesis is supported by the fact that in mice with bleomycin-induced 

lung fibrosis, the dysbiosis precedes the peak of lung injury and persists in the fibrotic lung (O’Dwyer 

et al., 2019). 
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In human medicine, the LM in IPF patients was clearly modified compared with the LM of 

healthy patients on the contrary of what we observed in D-WHWTs compared to H-WHWTs. In IPF, 

the diversity decreased and the bacterial load increased in association with the disease progression, the 

presence of certain genera, not found in CIPF dogs, has also been associated with IPF such 

as Haemophilus, Streptococcus, Neisseria, Staphylococcus and Veillonella (Molyneaux and Maher, 

2013; Dickson et al., 2016; Fastrès et al., 2017a; Huang et al., 2017; Salisbury et al., 2017; Takahashi 

et al., 2018; O’Dwyer et al., 2019). Of course, human and dogs are 2 different animal species with 

their own LM specificities. Moreover, the lack of common LM disturbances between IPF and CIPF 

may be related to the fact that the diseases, although presenting similarities, are different as suggested 

by well stablished differences in thoracic high resolution computed tomography (HRCT) (Heikkila-

Laurila and Rajamaki, 2014; Thierry et al., 2017) and histopathological (Syrjä et al., 2013) 

characteristics.  
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Conclusion 

In domestic conditions, at the exception of the WHWT, differences between the types of 

breeds appear to have minor influence on the LM and should only minimally impact results of clinical 

studies comparing dogs of different types of breeds. 

Differences in living conditions (experimental vs domestic dogs) were associated with 

modifications of the LM including a shift in the β-diversity, higher richness and identification of a 

large number of discriminant genera. Such differences need to be taken into account when results on 

the LM in experimental conditions are extrapolated to domestic dogs. 

The LM found in WHWTs was distinct from the LM of other healthy domestic dogs. 

Therefore, LM changes in WHWTs seem to be associated with the breed. No clear modifications of 

the LM were found in CIPF compared with healthy WHWTs. Accordingly, the differences in the LM 

found in WHWTs might be related to the high susceptibility of that breed for CIPF and don’t seem to 

be induced by the disease. Further long-term follow-up studies before and during the course of CIPF 

and studies assessing the role of the bacteria specifically found in D-WHWTs 

including Brochothrix, Curvibacter, Pseudarcicella and a genus belonging to Flavobacteriaceae 

family are needed to assess whether the LM play a role as a trigger of CIPF and as a contributor for 

the perpetuation of the disease.  
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Materials and Methods 

1. Study population 

The study was performed at the veterinary clinic of companion animals of the University of 

Liège (CVU, Liège, Belgium). Adult dogs were prospectively included and classified into different 

groups based on their types of breeds, living conditions and disease status. The different breeds 

recruited included experimental beagles (ExpB), domestic shepherds (S), domestic terriers (T), 

domestic brachycephalic dogs (Br) and domestic healthy WHWTs (H-WHWTs). H-WHWTs were 

selected in view of their high predisposition for CIPF; ExpB dogs were chosen for their experimental 

living conditions; T were recruited because they belong to the same kind of breed and are 

morphologically similar to WHWTs but are not predisposed to CIPF; S were chosen because they are 

larger, athletic dogs with a thin and deep thorax; Br were selected based on their facial morphology 

causing a partial upper airways obstruction and a different pattern of breathing (Amis and 

Kurpershoek, 1986; Bernaerts et al., 2010; Yu et al., 2017). The living conditions were classified into 

experimental and domestic conditions. Besides, domestic conditions were further subdivided into rural 

or urban. For investigation of LM alterations associated with the disease, the group including WHWTs 

affected with CIPF (D-WHWTs) was compared to the group of H-WHWTs, and to a group including 

all the other healthy domestic dogs (T, S and Br groups combined). 

Samples from healthy domestic dogs and dogs affected with CIPF were collected between 

May 2017 and April 2019. All dogs were privately owned (i.e. domestic dogs) and were housed in 

house or apartment, with or without outdoor access, and fed with various diets. For healthy dogs, 

owners were asked whether they lived in urban (inside a city of more than 2000 inhabitants) or rural 

area (in the countryside or in villages of less than 2000 inhabitants). Samples from ExpB were 

collected in December 2017. The beagles were experimental dogs housed in the experimental kennel 

of the University of Liège, by pair on woodchip litter, with a large concrete outdoor access, along a 

heavily used highway road 3 to 6 h per day and fed with a standardized commercial food. 

At inclusion, the status of the dogs was confirmed based on clinical signs, physical 

examination, haematology and plasma biochemistry (Idexx, Hoofddorp, The Nertherlands), gross 

appearance of the respiratory tract during bronchoscopy and analysis of the BALF. Moreover, in 

WHWTs, CIPF was diagnosed or excluded according to a previously described approach (Heikkila-

Laurila and Rajamaki, 2014) based on history, presence or absence of marked crackles on lung 

auscultation, and compatible findings or absence of abnormalities on thoracic HRCT. Dogs under 

antimicrobial drug or corticoids were not included in the study.  
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2. Sample collection 

BALFs were obtained in each dog under anaesthesia as previously described (Fastrès et al., 

2019). Briefly, dogs were anesthetized by a veterinary anaesthetist with a premedication with 

butorphanol 0.2 mg/kg intravenously (Butomidor® 10 mg/mL, Richter Pharma AG, Wels, Austria). 

Anaesthesia was then induced and maintained with intravenous propofol (Diprivan® 1%, Asen 

Pharma Trading Limited, Dublin, Ireland) infusion on demand; animals were not intubated except 

WHWT dogs which were intubated with a sterile endotracheal tube and maintained under anaesthesia 

with isoflurane during the HRCT before being extubated for the bronchoalveolar lavage (BAL) 

procedure. Before each use, the flexible paediatric endoscope (FUJINON© Paediatric Video-

Bronchoscope EB-530S) used for the bronchoscopy was cleaned and disinfected. Then, 3 to 4 mL/kg 

of sterile saline solution were injected into the bronchoscope channel wedged in the respiratory tract of 

dogs and directly reabsorbed in a sterile recipient. BALFs were stored just after the collection without 

any processing at − 80 °C until DNA extraction. Dogs were awakened after the BAL procedure and 

returned to their owners for domestic dogs or brought back to the kennel for experimental dogs. 

3. DNA extraction 

Analysis of the LM was performed as previously described (Fastrès et al., 2019). Briefly, total 

DNA was extracted from BALFs according to manufacturer’s instructions with the DNeasy Blood and 

Tissue kit (QIAGEN Benelux BV, Antwerp, Belgium), using the pre-treatment for Gram-positive 

bacteria protocol. This protocol was preceded by a beat beating step with glass beads > 106 μM and 

glass beads soda-lime (Sigma-Aldrich, Overijse, Belgium, Cat. G4649 and Z265926). DNA was 

eluted into DNase/RNase-free water for a final volume of 30 μL and the concentration and purity were 

evaluated using a ND-1000 spectrophotometer (NanoDrop ND-1000, Isogen, De Meern, The 

Netherlands). All DNA extractions were done at the same time with the same kit and procedure. 

4. 16S quantitative PCR 

The bacterial load was assessed in all samples by duplicate quantitative polymerase chain 

reactions (qPCRs) targeting the V2-V3 region of the 16S rDNA with the following primers, forward 

(5′-ACTCCTACGGGAGGCAGCAG-3′) and reverse (5′-ATTACCGCGGCTGCTGG-3′) (Bindels et 

al., 2015) as previously described (Fastrès et al., 2019). Results obtained were then expressed in base 

10 logarithm of the total 16S rDNA copy numbers per mL. 

5. 16S rDNA library preparation, sequencing and informatics 

For bacterial identification, polymerase chain reactions (PCRs) targeting the V1-V3 

hypervariable regions of the 16S rDNA were performed for all samples at the same time with the 



Chapter  3  Experimental section – Part 1 – Study 2 

  100 

following primers: forward (5′-GAGAGTTTGATYMTGGCTCAG-3′) and reverse (5′-

ACCGCGGCTGCTGGCAC-3′) and Illumina overhand adapters as already described (Ngo et al., 

2018; Fastrès et al., 2019). Amplicons obtained were purified, quantified and submitted to a second 

PCR round for indexing. A final quantification of all samples was performed by qPCR before 

normalization and pooling of the amplicons to form libraries. Libraries obtained were then sequenced 

on a MiSeq Illumina sequencer (Illumina, San Diego, CA, USA) using V3 reagents. After sequencing, 

8,930,807 reads with a median length of 508 nucleotides were obtained. 

After a first cleaning step (length and sequences quality), 6,991,349 reads were screened for 

chimera using Vsearch algorithm (Rognes et al., 2016). Six million six hundred ninety-nine thousand 

five hundred seventy-two reads were retained for alignment and clustering using MOTHUR v1.40 

(Kozich et al., 2013). Taxonomical assignations with an operational taxonomic unit (OTU) clustering 

distance of 0.03 were based on the SILVA database v1.32. A final subsampling was performed with a 

median reads per sample of 10,000. 

All sample raw reads associated with this study have been deposited at the National Centre for 

Biotechnology Information (NCBI) under the accession number PRJNA594816. 

6. Identification of procedural contaminants and validation of the sequencing 

Procedural control specimens (PCSs) were obtained in order to evaluate the general 

contamination during sampling just before each BAL by injection and direct reabsorption into the 

bronchoscope channel of 10 mL of sterile saline solution (NaCl 0.9%). PCSs were then stored at 

− 80 °C until further analysis. PCS were then treated exactly the same way as the BALF samples. 

Briefly, DNA was extracted with the same technique, same extraction kit and at the same time as 

samples. Bacterial load in PCSs was obtained by duplicate qPCRs performed in the same run as 

samples, by the same technique. The bacterial load was about 100 times lower in the PCS than in the 

corresponding BALF samples (P < 0.0001). PCR targeting the V1-V3 region of the 16S rDNA were 

performed as for the samples. The PCS amplification products were < 1 ng/μL and were then not 

sequenced. 

A positive control using 20 defined bacterial species DNA and a negative control from the 

PCR step were included into the run to validate the sequencing. 

7. Statistical analysis 

The influence of the type of breed was assessed by comparing the 5 groups of healthy dogs. 

The influence of the living conditions was evaluated by comparing experimental, rural and urban 
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conditions. Finally, the influence of CIPF on the LM was evaluated by comparing all healthy domestic 

dogs other than WHWTs, H-WHWTs and D-WHWTs. 

Normality was first checked using the Shapiro-Wilk test for each analysis. Characteristics of 

the groups were compared using Kruskal-Wallis test and post-hoc Dunn tests with Bonferroni 

correction using XLStat (Addinsoft, Paris, France). 

Statistical differences in the relative abundance of taxa were assessed with Kruskal-Wallis test 

using Benjamini Hotchberg procedure and a false discovery rate of 10% for multiple comparisons, 

followed by Tukey-Kramer post hoc tests, using STAMP software (Parks and Beiko, 2010). The LDA 

was performed to detect discriminant bacteria between groups at the genus level with MOTHUR 

v1.40. For the LDA interpretation, differences were considered as significant for a P < 0.05 and a LDA 

score > 3.0 (Segata et al., 2011). 

Metrics of richness (Chao1 index), evenness (Simpson index-based measure) and α-diversity 

(inverse Simpson’s index) were assessed with MOTHUR v1.40 at the OTUs level and compared 

between groups using Kruskal-Wallis test and Dunn post-hoc tests with Bonferroni correction using 

XLStat. The same test was used to compare the bacterial load between groups. Non-metric 

multidimensional scaling (NMDS) figures were performed based on a Bray-Curtis dissimilarity matrix 

at the OTUs level to represent the global bacterial composition (β-diversity) between groups (R vegan 

package). The β-diversity between types of breeds, living conditions and disease status was calculated 

using R (vegan package) by a permutational multivariate analysis of variance (PERMANOVA) 

followed by pairwise tests with Bonferroni correction. 

Results are expressed in median and interquartile range. A P-value < 0.05 was considered as 

statistically significant.  
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Abstract 

Infection with Bordetella bronchiseptica (Bb), a pathogen involved in canine infectious 

respiratory disease complex, can be confirmed using culture or qPCR. Studies about the canine lung 

microbiota (LM) are recent, sparse, and only one paper has been published in canine lung infection. In 

this study, we aimed to compare the LM between Bb infected and healthy dogs, and to correlate 

sequencing with culture and qPCR results. Twenty Bb infected dogs diagnosed either by qPCR and/or 

culture and 4 healthy dogs were included. qPCR for Mycoplasma cynos (Mc) were also available in 18 

diseased and all healthy dogs. Sequencing results, obtained from bronchoalveolar lavage fluid after 

DNA extraction, PCR targeting the V1–V3 region of the 16S rDNA and sequencing, showed the 

presence of Bb in all diseased dogs, about half being co-infected with Mc. In diseased compared with 

healthy dogs, the β-diversity changed (P = 0.0024); bacterial richness and α-diversity were lower 

(P = 0.012 and 0.0061), and bacterial load higher (P = 0.004). Bb qPCR classes and culture results 

correlated with the abundance of Bb (r = 0.71, P < 0.001 and r = 0.70, P = 0.0022). Mc qPCR classes 

also correlated with the abundance of Mc (r = 0.73, P < 0.001). Bb infection induced lung dysbiosis, 

characterized by high bacterial load, low richness and diversity and increased abundance of Bb, 

compared with healthy dogs. Sequencing results highly correlate with qPCR and culture results 

showing that sequencing can be reliable to identify microorganisms involved in lung infectious 

diseases.  
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Introduction 

Bordetella bronchiseptica, a Gram-negative, aerobic, coccobacillus, is regarded as one of the 

principal pathogens involved in canine infectious respiratory disease complex (CIRD-C)(Schulz et al., 

2014; Viitanen et al., 2015; Canonne et al., 2016; Maboni et al., 2019). Its prevalence in dogs with 

infectious respiratory diseases ranges from 5.2 to 78.7% (Schulz et al., 2014; Rheinwald et al., 2015; 

Decaro et al., 2016; Maboni et al., 2019). According to the taxonomical classification, the 

bacterium B. bronchiseptica belongs to the Proteobacteria phylum, the Alcaligenaceae family and 

the Bordetella genus (NCBI, 2019a). CIRD-C or formerly “kennel cough” is considered as one of the 

most common infectious diseases in dogs worldwide despite vaccination, and affects mostly young 

and kennel dogs (Ford, 2012). Viruses such as canine adenovirus, canine distemper virus, canine 

parainfluenza virus, canine respiratory coronavirus, pneumovirus and influenza A virus and bacteria 

other than B. bronchiseptica such as Mycoplasma cynos and Streptococcus 

equi subsp. zooepidermicus are primary infectious agents involved in the complex (Ford, 2012; 

Maboni et al., 2019). Because of the numerous infectious aetiologies as well as possible co-infections, 

clinical signs of CIRD-C are highly variable and difficult to predict ranging from mild illness to severe 

pneumonia or death (Ford, 2012). Among the bacteria, Mycoplasma cynos, a Gram-negative organism 

is considered as an emerging bacterium in CIRD-C (Priestnall et al., 2014; Maboni et al., 2019). This 

bacterium belongs to the Tenericutes phylum, the Mycoplasmataceae family and 

the Mycoplasma genus (NCBI, 2019b). The diagnosis of B. bronchiseptica infection can be confirmed 

either by culture or by specific quantitative polymerase chain reaction (qPCR) on various samples 

including bronchoalveolar lavage fluid (BALF). The bacteria can also be observed on cytological 

preparations, adhering to the top of the cilia of respiratory epithelial cells (Canonne et al., 2016). The 

treatment against B. bronchiseptica can be challenging as the bacterium is localized at the top of the 

cilia, can adopt a biofilm lifestyle and may drive an immunosuppressive response (Anderton et al., 

2004; Skinner et al., 2005; Pilione and Harvill, 2006; Buboltz et al., 2009; Cattelan et al., 2016). In 

such cases, classical oral or parenteral antimicrobial drug may not be sufficient even if in vitro 

susceptibility is shown (Steinfeld et al., 2012). Recently, it has been shown that gentamycin 

nebulization was helpful to achieve therapeutic concentration on the apical surface of bronchial 

epithelium, mostly when classical antimicrobial drugs failed to be curative (Bemis and Appel, 1977; 

Vieson et al., 2012; Canonne et al., 2018). 

The 16S rDNA amplicon sequencing is a technique less sensitive than a qPCR but which 

allows rapid and accurate identification of all the bacteria composing the microbiota, which refers to 

the global microbial population of an area, including rare, unknown, slow-growing and unculturable 

bacteria (Woo et al., 2008; Segal et al., 2014; Scher et al., 2016; Patelet al., 2017). Moreover, this 

technique allows highlighting the complexity of the microbial populations and their alterations in 
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disease processes (Woo et al., 2008; Patel et al., 2017). In man, the 16S rDNA amplicon sequencing is 

increasingly being used in clinical contexts such as in acute pneumonia. Acute pneumonia is 

considered as an abrupt, emergent phenomenon with the predominance of specific taxonomic groups, 

low microbial diversity and high bacterial load (Dickson et al., 2014, 2016; Dickson, Erb-Downward 

and Huffnagle, 2014). Studies in acute pneumonia indicate that the 16S rDNA sequencing improves 

the microbiological yield and could help to guide antimicrobial therapy (Woo et al., 2008; Johansson 

et al., 2019). In dogs, the lung microbiota (LM) has only been studied in bacterial secondary or 

community-acquired pneumonia (CAP) and only few data are available in experimental healthy 

beagles (Ericsson et al., 2016; Fastrès et al., 2019; Vientós-plotts et al., 2019) and healthy dogs from 

other breeds (Fastrès et al., 2020a). In dogs with pneumonia, a dysbiosis of the LM was observed with 

the loss of bacteria found in health and the domination, mostly in CAP, of one or two bacteria 

(Vientós-plotts et al., 2019). Moreover a good agreement was found between the results of 16S rDNA 

amplicon sequencing and culture, although some discrepancies concerning the number of unique taxa 

identified and presence or absence of predominating taxa were noticed (Vientós-plotts et al., 2019). 

Results suggest that the 16S rDNA amplicon sequencing could be useful for causal bacteria detection 

in parallel with culture, mostly if culture is negative (Vientós-plotts et al., 2019). 

The aims of this study were to analyse the LM in a series of cases with B. 

bronchiseptica infection in comparison with healthy dogs and to correlate results of the 16S rDNA 

amplicon sequencing with qPCR and culture results.  
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Materials and methods 

1. Case selection criteria 

Client-owned dogs referred to the veterinary hospital of the University of Liège, between 

January 2014 and December 2018, with a diagnosis of B. bronchiseptica infection, were recruited. 

Infection with B. bronchiseptica was confirmed by either positive culture (> 10
4
 colony forming 

unit/mL), or positive qPCR, or both, on BALF samples and by the resolution of the clinical signs after 

adapted antimicrobial drug administration. Another inclusion criterion concerned the availability of 

BALF banked at −80 °C, for LM analysis. Data were collected from the medical records and included 

signalment, history, clinical signs, thoracic radiography, bronchoscopy findings and BALF analysis 

results, as well as culture and qPCR results. 

BALF samples from healthy dogs involved in an independent study analysing the effect of the 

type of breed on the LM composition were also used. Those samples were obtained according to a 

protocol approved by the Ethical Committee of the University of Liège (protocol #1435) and after the 

owner consent. Healthy status was confirmed based on a complete history without abnormalities, 

normal physical examination, blood work (haematology and biochemistry), bronchoscopy and BALF 

analysis (gross appearance and cell counts). Healthy dogs did not receive any kind of antimicrobial 

drugs or probiotics for the year preceding the study. 

2. BALF collection and processing 

Bronchoscopy, bronchoalveolar lavage (BAL) procedure, and BALF processing and analysis 

were performed as already described (Canonne et al., 2016; Fastrès et al., 2019). Briefly, dogs were 

anesthetized using various protocols at the discretion of a board-certified anaesthesiologist. A flexible 

paediatric endoscope (FUJINON© Paediatric Video-Bronchoscope EB-530S) cleaned and disinfected 

before each use was inserted into the trachea until the extremity was wedged into the bronchi. Three to 

four mL/kg of sterile saline solution (NaCl 0.9%) divided into three aliquots were instilled into at least 

two different lung lobes, followed by aspiration by gentle suction. The recovered BALF was pooled. 

Before each BAL in dogs, a procedural control specimen (PCS) was obtained by injection and 

aspiration of 10 mL of sterile saline solution (NaCl 0.9%) through the bronchoscope. 

Just after BALF collection, total (TCC) and differential cells counts (DCC) were determined 

using respectively a hemacytometer and a cytospin preparation (centrifugation at 221 g, for 4 min at 

20 °C, Thermo Shandon Cytospin©4), by counting a total of 200 cells at high power field. Part of the 

crude BALF was promptly stored in cryotubes at −80 °C for the microbiota analysis and the remaining 
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BALF was centrifuged at 3500 × g 15 min at 4 °C and divided into pellets and supernatant also stored 

separately at −80 °C. The PCSs were stored in cryotubes at −80 °C without processing. 

3. Culture 

Cultures from crude fresh BALF samples were performed for aerobic bacteria detection. 

Cultures were conducted at 35 °C on several agar plates (Chapman’s, Mac Conkey’s, CAN and TSS 

agar). Standard biochemical methods were used to identify the bacteria (Synlab Laboratories, Liège, 

Belgium). Due to challenging growth requirements and as it is not classically performed in 

clinic, Mycoplasma sp. was not cultured. BALF samples from healthy dogs were not submitted to 

conventional bacterial culture. 

4. B. bronchiseptica and M. cynos qPCR 

In diseased dogs, qPCR targeting B. bronchiseptica and M. cynos were performed either on 

crude fresh BALF when performed immediately after the BAL procedure or on pellet and crude frozen 

BALF when performed later. In healthy dogs, qPCRs were performed on frozen pellet BALF 

(Department of Veterinary Pathology, Liège, Belgium). 

DNA was extracted from samples using the NucleoMag Vet kit (Macherey-Nägel GmbH & 

Co. KG, Düren, Germany) according to the protocol provided by the manufacturer. Total DNA 

quantity and purity were measured after extraction using the ND-1000 spectrophotometer (NanoDrop 

ND-1000, Isogen, De Meern, The Netherlands). 

For B. bronchiseptica and M. cynos detection, duplicate qPCR reactions (20 µL) included 

2 µL of DNA template, 10 µL Luna Universal Probe qPCR Master Mix (Bioké, The Netherlands), 6 

µL of water and 2 µL of the primers mix. For B. bronchiseptica, the primers mix contained 20 µL of 

the forward primer (5′-ACTATACGTCGGGAAATCTGTTTG -3′) and the reverse primer (5′-

CGTTGTCGGCTTTCGTCTG -3′) at 10 µM and 10 µL of the probe (5′-FAM-

CGGGCCGATAGTCAGGGCGTAG-BHQ1-3′) at 10 µM (Helps et al., 2005). The cycling conditions 

started with an initial denaturation step at 95 °C for 10 min, followed by 45 cycles of denaturation at 

95 °C for 30 s, primer annealing at 55 °C for 20 s and elongation at 72 °C for 1 min. For M. cynos, the 

primers mix contained 20 µL of the forward primer (5′-GTGGGGATGGATTACCTCCT-3′) and the 

reverse primer (5′-GATACATAAACACAACATTATAATATTG-3′) at 10 µM and 10 µL of the 

probe (5′-TCTACGGAGTACAAGTTACAATTCATTTTAGT-3′) at 10 µM (Sakmanoglu et al., 

2017). The cycling conditions were as follows: an initial denaturation step at 95 °C for 10 min, 

followed by 45 cycles of denaturation at 95 °C for 30 s, primer annealing at 50 °C for 20 s and 

elongation at 72 °C for 1 min. 
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Results obtained were further categorized into 6 classes for the correlation with the LM 

calculation according to a previously published study (Canonne et al., 2016). Briefly, classes were 

defined based on the cycle threshold (Ct) values: very high load (Ct < 20), high load (20.1–24), 

moderate load (24.1–28), low load (28.1–32), very low load (> 32.1), and negative results. 

5. 16S rDNA amplicon sequencing 

Analysis of the LM in all samples was performed for each step (DNA extraction, polymerase 

chain reactions (PCRs), sequencing and post sequencing analysis) on a single occasion for all samples. 

As required, strict laboratory controls were done to avoid contaminations from PCR reagents and 

laboratory materials. 

DNA was extracted from crude BALFs and PCSs previously banked at −80 °C, following the 

protocol provided with the DNeasy Blood and Tissue kit (QIAGEN Benelux BV; Antwerp, Belgium) 

as already described (Ngo et al., 2018; Fastrès et al., 2019). Total DNA quantity and purity were 

measured after extraction using the ND-1000 spectrophotometer (NanoDrop ND-1000, Isogen, De 

Meern, The Netherlands). 

Duplicate qPCRs targeting the V2-V3 region of the 16S rDNA were performed to evaluate the 

bacterial load in the lung as already described (Bindels et al., 2015; Fastrès et al., 2019). qPCRs were 

conducted in a final volume of 20 µL containing 2.5 μL of template DNA, 0.5 μL of forward primer 

(5′-ACTCCTACGGGAGGCAGCAG-3′; 0.5 μM), 0.5 μL of reverse primer (5′-

ATTACCGCGGCTGCTGG-3′; 0.5 μM), 10 μL of No Rox SYBR 2 × MasterMix (Eurogentec, 

Seraing, Belgium), and 6.5 μL of water. Data were recorded using an ABI 7300 real-time PCR system, 

with the following cycling sequence: 1 cycle of 50 °C for 2 min; 1 cycle of 95 °C for 10 min; 40 

cycles of 94 °C for 15 s; and 1 cycle of 60 °C for 1 min. A melting curve was constructed in the range 

of 64–99 °C and the end of the cycle. The run contained also non-template controls and a tenfold 

dilution series of a V2–V3 PCR product purified (Wizard
®
 SV Gel and PCR Clean-Up System, 

Promega, Leiden, The Netherlands), quantified by PicoGreen targeting double-stranded DNA 

(Promega) and used to build the standard curved. The results reflecting the bacterial load were 

expressed in logarithm with base 10 of the copy number per millilitre. 

To characterize the bacterial populations in samples, the V1–V3 region of the bacterial 16S 

rDNA gene was amplified using the forward primer (5′-GAGAGTTTGATYMTGGCTCAG-3′) and 

the reverse primer (5′-ACCGCGGCTGCTGGCAC-3′) with Illumina overhand adapters as previously 

described (Ngo et al., 2018; Fastrès et al., 2019). PCRs were conducted and amplicons obtained 

purified with the Agencourt AMPure XP beads kit (Beckman Coulter, Villepinte, France), indexed 

using the Nextera XT index primers 1 and 2 and quantified by PicoGreen (ThermoFisher Scientific, 
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Waltham, MA, USA) before normalization and pooling to form libraries. The amplification 

products < 1 ng/µL were not sequenced. 

Sequencing was performed on a Miseq Illumina sequencer using V3 reagents with positive 

controls and negative controls from the PCR step. 

A total of 3 254 346 reads were obtained after sequencing with a median length of 510 

nucleotides. After a first cleaning step, 3 116 730 reads were screened for chimera using Vsearch 

(Rognes et al., 2016). 3 040 049 reads were retained for alignment and clustering using MOTHUR 

v1.40 (Kozich et al., 2013). The taxonomical assignations with an operational taxonomic unit (OTU) 

clustering distance of 0.03 were based on the SILVA database v1.32. A final subsampling was 

performed with a median reads per samples of 10 000 reads. 

All sample raw reads were deposited at the National Centre for Biotechnology Information 

and are available under Bioproject ID PRJNA575149. 

6. Statistical analyses 

To compare diseased and healthy dogs, a subpopulation of dogs with B. 

bronchiseptica infection was selected to be age-matched with the population of healthy dogs (Mann–

Whitney tests using XLStat software). 

Normality was checked with Shapiro–Wilk tests before each comparison between healthy and 

diseased dogs. Mann–Whitney tests were used to compared TCC and DCC between diseased and 

healthy dogs using XLStat software. Differences in relative abundances between groups at all the 

taxonomic levels were assessed by Welch’s t-tests and Benjamini–Hochberg–false discovery rate of 

10% correction (O’Dwyer et al., 2019), with STAMP software. The β-diversity was evaluated by a 

permutational analysis of the variance (PERMANOVA) and visualized with a principal component 

analysis (PCA) using R (R vegan package). Other ecological parameters of the LM were calculated 

using MOTHUR v1.40 and compared between healthy and diseased dogs with Mann–Whitney tests 

using XLStat software. The α-diversity was based on the inverse Simpson index, the richness on the 

chao index and the evenness was derived from the Simpson index. The bacterial load was compared 

between groups with Mann–Whitney tests using XLStat software. The bacterial loads in PCSs were 

compared with the corresponding bacterial load in BALF samples with a Wilcoxon signed-rank test 

using XLStat software. 

Correlations between the lung bacterial communities at each taxonomic level and the Ct 

classes for either B. bronchiseptica or M. cynos, and the culture results, were measured with Spearman 

tests using XLStat software. 
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Data were expressed as median and interquartile range. A P value < 0.05 was considered as 

statistically significant.  
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Results 

1. Animals 

Twenty dogs with a diagnosis of B. bronchiseptica infection and 4 healthy dogs were included 

in the study (Table 1). In all dogs, median age was 9 months (range 3-18) and medium weight was 

11.5 kg (1.3–41.0). From the 20 diseased dogs, seven (dogs no. 3, 9, 14, 15, 18, 19 and 20) were 

selected and compared with the 4 healthy dogs. No significant difference in the age was found 

between the subpopulation of diseased dogs and the healthy dogs (P = 0.073). For the TCC, DCC and 

all LM parameters (including relative abundances at all taxonomic levels, the bacterial load and the 

ecological parameters including the β and α-diversity, the richness and the evenness), differences 

between the subpopulations of diseased dogs selected or not for the comparison with healthy dogs 

were not significant indicating that the subsampling is representative of all the diseased group (see 

Additional file 1). 

Table 1: Characteristics of the dogs included in the study. 

Dogs Status Age at 

sampling 

(years) 

Sex Breed Antibiotic treatment at 

sampling 

Ct 

B. 

bronchiseptica 

Ct 

M. 

cynos 

Culture 

1 Diseased 0.60 M French bulldog - 28.4 22.9 / 

2 Diseased 0.40 M Malamute + 

(amoxicillin/clavulanic 

acid 12.5 mg/kg BID 

and enrofloxacin 5 

mg/kg SID, PO, for 1 

day) 

22.3 18.5 - 

3 Diseased 1.05 F French bulldog - 25.3 - + (B. 

bronchiseptica) 

4 Diseased 0.43 F Boxer - 21.9 - + (B. 

bronchiseptica) 

5 Diseased 0.65 F French bulldog + (doxycycline 5 

mg/kg BID, PO, for 10 

days) 

24.2 LOD + (B. 

bronchiseptica) 

6 Diseased 0.32 F English 

bulldog 

+ (marbofloxacin 3 

mg/kg SID, PO, for 7 

days) 

? ? - 

7 Diseased 0.35 F Jack Russel 

terrier 

- / / + (B. 

bronchiseptica) 

8 Diseased 0.54 M Boxer + 

(amoxicillin/clavulanic 

acid 12.5 mg/kg BID, 

PO for 1 day) 

26.5 24.0 - 

9 Diseased 0.99 F Munster lander - 23.6 - + (B. 

bronchiseptica) 

10 Diseased 0.38 F French bulldog - ? / / 

11 Diseased 0.56 F Chihuahua - 24.0 ? - 

12 Diseased 0.51 F Cavalier king 

Charles spaniel 

- 24.0 - + (B. 

bronchiseptica) 
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13 Diseased 0.57 F German 

shepherd 

- 21.5 LOD + (B. 

bronchiseptica) 

14 Diseased 0.68 F Cavalier king 

Charles spaniel 

- 25.6 23.7 + (B. 

bronchiseptica, 

Acinetobacter 

baumanii) 

15 Diseased 0.99 M Spitz - 17.6 - + (B. 

bronchiseptica) 

16 Diseased 0.53 M Boxer - 25.3 32.8 / 

17 Diseased 0.27 M Yorkshire 

terrier 

- 21.8 - + (B. 

bronchiseptica) 

18 Diseased 0.90 F Spitz - 23.5 - + (Pantoea 

agglomerans, 

Serratia 

marcescens) 

19 Diseased 1.51 M Chinese crested  + (doxycycline, one 

injection, dose 

unknown) 

32.0 - - 

20 Diseased 0.72 M Cavalier king 

Charles spaniel 

- 21.5 - + (B. 

bronchiseptica) 

21 Healthy 1.26 M Beauceron - - - / 

22 Healthy 1.19 M French bulldog - - - / 

23 Healthy 1.40 M French bulldog - 38.0 - / 

24 Healthy 1.43 M Pug - - - / 

qPCR, quantitative polymerase chain reaction; Ct, cycle threshold value; +, positive result; -, 

negative result; ?, positive qPCR result but Ct value not known; /, test not performed; LOD, only one 

replicate was above the detection’s limit; SID, once a day; BID, twice a day; PO, oral administration. 

French bulldogs, boxers and Cavalier King Charles spaniels were among the most represented 

breeds and counted for 50% of the recruited dogs affected with B. bronchiseptica. Chronic productive 

daily cough of at least 1 week to 4 month’s duration (median of 1 month) was reported in all diseased 

cases. At presentation, 5 dogs were receiving oral antimicrobial agents (Table 1) without improvement 

including amoxicillin/clavulanic acid (n = 1), amoxicillin/clavulanic acid with enrofloxacin (n = 1), 

doxycycline (n = 2) and marbofloxacin (n = 1). Vaccinal status was recorded for 15 dogs, 6 dogs were 

not vaccinated against B. bronchiseptica and 9 received only one subcutaneous vaccinal injection 

(Pneumodog©, Merial, Lyon, France) between one and 12 months (median 2 months) before the 

development of symptoms. Physical examination was normal in 5 dogs, positive laryngo-tracheal 

reflex was noted in 10 dogs, 5 dogs had bilateral nasal discharge, 2 had dyspnoea and 1 had mild 

hyperthermia (39.1 °C). Thoracic radiography revealed the presence of a ventral alveolar pattern in 9 

dogs, a broncho-interstitial pattern in 8 dogs and no abnormalities in 3 dogs. The diagnosis of B. 

bronchiseptica infection was confirmed by a positive qPCR (n = 9), a positive culture (n = 1) or both 

(n = 10).  
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2. Bronchoscopy and BALF analysis 

During the bronchoscopy procedure, in diseased dogs, mucopurulent material was seen in the 

trachea and bronchi in 14 dogs, oedema and/or erythema and/or thickening of the bronchial wall was 

noted in 10 dogs, bronchomalacia was reported in 4 dogs. TCC and DCC were available in the BALF 

of 18 and 17 diseased dogs, respectively. In all the diseased dogs, median TTC was 1740 cells/µL 

(1080–3515) and the median differential cell count included 39% (12–63) of macrophages, 41% (24–

77) of neutrophils, 7% (4–12) of lymphocytes and 1% (0–5) of eosinophils. 

Compared with healthy dogs, the TTC in the subpopulation of dogs affected with B. 

bronchiseptica was significantly higher with more neutrophils and less macrophages (Table 2). 

Table 2: Total and differential cell counts between the subpopulation of diseased dogs and healthy 

dogs. 

  
Total cell count 

(cells/µL) 
Macrophages (%) Neutrophils (%) 

Lymphocytes 

(%) 

Eosinophils 

(%) 

Subpopulation of 

diseased dogs (n = 7) 
1300 (1040 - 3622) 33 (15.8 – 47.2) 48 (35.8 – 68.5)  9.5 (6.2 – 15.8) 2 (1 – 6.8) 

Healthy dogs (n = 4) 270 (243.8 - 380) 91.5 (85.5 – 96.2) 2.5 (2 – 3.2) 6 (0.8 – 11.2) 0.5 (0 – 1.5) 

P-value 0.0061 < 0.001 0.014 0.29 0.32 

Results are expressed as median (range). Significant P-values are in bold. The subpopulation of 

diseased dogs corresponds to the dogs n°3, 9, 14, 15, 18, 19 and 20 in the Table 1. 

3. Culture results 

In the diseased dogs, the result of the culture was positive for B. bronchiseptica in 6/11 dogs 

(54.5%) and negative in 5 dogs from which 4 were under antimicrobial treatment. 

4. B. bronchiseptica and M. cynos quantitative PCR 

All qPCR results were positive for B. bronchiseptica in the diseased dogs (19/19) and included 

1 very high load result, 9 high load results, 5 moderate load results and 2 low load results, one of them 

corresponding to a dog receiving doxycycline. Two qPCRs were positive without information 

available on the Ct level. qPCR results for M. cynos were positive in 7/18 (38.9%) and included 1 very 

high load result, 3 high load results and 1 very low load result. Two qPCR results were positive but Ct 

values were unknown. 

In the healthy group, one dog had a positive qPCR result for B. bronchiseptica at a very low 

load, while the results were negative in the 3 other dogs. qPCRs for M. cynos were all negative in the 

healthy group. 
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5. Microbiota analysis 

The PCSs were not sequenced as their amplification products after purification 

were < 1 ng/µL. An internal study performed in our laboratory (Taminiau B and Daube G, unpublished 

observations) showed that under this value, the sequencing is not reliable. Moreover, the bacterial load 

was about 100 times lower in the PCSs compared with the samples (P = 0.016). 

B. bronchiseptica was found in each of the 20 diseased dogs with a relative abundance of 

more than 50% in 13 of them. Only 2 dogs (dogs n°1 and 11) had a relative abundance of B. 

bronchiseptica of less than 5% (Figure 1). Among the diseased dogs, 40% (8/20) were co-infected 

with M. cynos and/or Pseudomonas sp. and other strain of Mycoplasma than M. cynos. Other bacteria 

were also found in high relative abundance (> 5%) including, Elizabethkingia 

meningoseptica, Stenotrophomonas sp., Ureaplasma sp., Alcaligenaceae_genus sp., Elizabethkingia 

meningoseptica, Fusobacterium sp., Methylotenera sp. and Escherichia-Shigella sp. (Figure 1). 

Figure 1. Species-level composition of the lung microbiota in dogs affected with B. bronchiseptica. 

Bar charts showing relative abundance annotated to the taxonomic level of species of all taxa detected 

in the bronchoalveolar lavage fluid of 20 dogs affected with B. bronchiseptica. 

In healthy dogs, B. bronchiseptica was found by amplicon sequencing in one dog and M. 

cynos in 3 dogs in a very low relative abundance (0.43 and 0.55, 0.52 and 0.61% respectively). 
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In diseased compared with healthy dogs, a shift was observed in the bacterial populations with 

more Alcaligenaceae in diseased compared with healthy dogs (82.3% (62.6-99.4) versus 2.2% (1.3–

3.8); P-value corrected = 0.058) at the family level (Figure 2B). At the genus level (Figure 2C), there 

were more Bordetella in diseased compared with healthy dogs (82.3% (61.7-99.4) versus 0% (0–

0.1); P-value corrected = 0.11). There was no significant difference at the phylum (Figure 2A) and at 

the species levels (Figure 2D), although a marked increase in Proteobacteria (94.3% (67.6-99.6) versus 

38.9% (30.4–49.0); P-value corrected = 0.30) phylum reflecting the increase in B. 

bronchiseptica (79.8% (59.5–96.2) versus 0% (0–0.1); P-value corrected = 0.40) species was noted in 

diseased compared with healthy dogs. The β-diversity (Figure 3) assessed by the PERMANOVA was 

significantly different between healthy and diseased dogs (P = 0.0024). The α-diversity (Figure 4A) as 

well as the richness (Figure 4B) were significantly lower in diseased compared with healthy dogs. 

There was no difference between healthy and diseased dogs for the evenness (P = 0.10) ((Figure 4C). 

Finally, the bacterial load was significantly higher in dogs with B. bronchiseptica infection compared 

with healthy dogs (Figure 5). 

 

 

 

 

 

 

 

 

 

 

Figure 2. Taxa detected in healthy dogs and dogs affected with B. bronchiseptica. Bar charts showing 

the relative abundance of all taxa detected in the bronchoalveolar lavage fluid of 4 healthy dogs and 7 

dogs affected with B. bronchiseptica, annotated to the taxonomic level of phylum (A), family (B), 

genus (C) and species (D). 
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Figure 3. Principal component analysis 

representing the β-diversity between 

healthy dogs and dogs affected with B. 

bronchiseptica. Lung communities are 

clustered by groups (diseased (n = 7) and 

healthy (n = 4) dogs). 

 

 

Figure 4. Ecological parameters comparison between healthy dogs and dogs affected with B. 

bronchiseptica. Box plot graphs representing the bacterial alpha diversity (A), richness (B) and 

evenness (C) in healthy (n = 4) compared with diseased dogs (n = 7). The medians are represented by 

the central horizontal bars. The lower and upper limits of the box are the first and third quartiles, 

respectively. *P = 0.012; **P = 0.006.  
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Figure 5. Bacterial load in healthy 

dogs and dogs affected with B. 

bronchiseptica. Box plot representing 

the logarithm of the number of 16S 

rDNA copies per microliter (bacterial 

load) between healthy (n = 4) and 

diseased dogs (n = 7). The medians are 

represented by the central horizontal 

bars. The lower and upper limits of the 

box are the first and third quartiles, 

respectively. *P = 0.004. 

A significant positive correlation was found between the bacterial composition in B. 

bronchiseptica and M. cynos at each taxonomic level obtained by the 16S rDNA amplicon sequencing 

and the Ct classes for B. bronchiseptica and M. cynos, and the culture results as shown in Table 3. In 

all cases where a positive culture was found for B. bronchiseptica, the relative abundance for B. 

bronchiseptica was highly elevated (96.01% (94.87–96.56)). In 2 dogs, other bacteria were identified 

by culture including Acinetobacter baumanii, Pantoea agglomerans and Serratia 

marcescens (Table 1) but were not identified by sequencing. 

Table 3: Correlation between the 16S rDNA amplicon sequencing and either Ct classes or culture. 

  B. bronchiseptica M. cynos 

 

 

qPCR results  Culture results qPCR results  

 r P-value r P-value r P-value 

1
6

S
 r

D
N

A
 a

m
p
li

co
n
 

se
q

u
en

ci
n
g
 r

es
u
lt

s 

Phyla 
Proteobacteria 0.54 0.012 0.70 0.0022 

  
Tenericutes 

  
  0.66 0.0018 

Families 

 

Alcaligenaceae 0.66 0.0015 0.70 0.0021   

Mycoplasmataceae 
  

  0.66 0.0018 

Genera 
Bordetella 0.73 < 0.001 0.70 0.0022 

  
Mycoplasma 

  
  0.66 0.0018 

Species 

Bordetella_bronchiseptica 0.71 < 0.001 0.70 0.0022 
  

Mycoplasma_cynos 
  

  0.73 < 0.001 

Bordetella_Otu00473 0.70 < 0.001 0.68 0.0017 
  

Significant positive correlation results between the bacterial composition of the LM in all dogs (n = 

24) for B. bronchiseptica and M. cynos at each taxonomic level and either B. bronchiseptica and M. 

cynos Ct classes or the culture. qPCR, quantitative polymerase chain reaction; r, Spearman 

correlation coefficient.  
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Discussion 

In the present study, we described the LM in dogs with CIRD-C and B. 

bronchiseptica infection. We showed a clear dysbiosis of the LM with a significant decrease in α-

diversity and richness, as well as an increased bacterial load, in dogs affected with B. 

bronchiseptica compared with healthy dogs. The Alcaligenaceae family and the Bordetella genus were 

overrepresented in diseased dogs. In the sequencing profile, about half of the diseased dogs were co-

infected, the majority with M. cynos. Finally, a positive correlation was found between the bacterial 

composition of the LM for B. bronchiseptica and M. cynos at each taxonomic level and the 

corresponding qPCR or culture result. 

In this study, the major phyla found in healthy dogs were the Proteobacteria, the 

Bacteroidetes, the Actinobacteria and the Firmicutes. The same major phyla have already been 

reported in the LM of healthy dogs (Ericsson et al., 2016; Fastrès et al., 2019; Fastrès et al., 2020a). 

Despite their implication in CIRD-C, B. bronchiseptica and M. cynos are commensal bacteria found in 

the respiratory tract of healthy dogs (Ford, 2012; Canonne et al., 2016; Maboni et al., 2019). In the 

present study, the amplicon sequencing technique detected B. bronchiseptica at very low level in 1 

healthy dog, in which qPCR revealed a very low load. The absence of dysbiosis associated with the 

presence of B. bronchiseptica at a very low level in that dog, corroborates the fact that this bacterium 

is a commensal bacterium which is not always associated with lung disease (Ford, 2012; Canonne et 

al., 2016; Maboni et al., 2019). The amplicon sequencing technique also detected M. cynos in low 

relative abundance in 3 of the healthy dogs, while qPCR results were negative. Since different aliquots 

from a same initial sample of BALF were used for qPCR and amplicon sequencing technique, a lack 

of homogeneity between the aliquots could explain this slight discrepancy. 

Compared with healthy dogs, a dysbiosis was observed in the diseased dogs, with a shift in 

microbial populations as shown by a clear difference in the β-diversity. The Proteobacteria and the 

Tenericutes phylum were more abundant in the diseased dogs, logically reflecting an increased 

prevalence of Bordetella and Mycoplasma. The incapacity to show significant differences between 

healthy and diseased dogs at the species level was probably due to a lack of power in the statistical 

tests related to the low number of control dogs included in the study as well as to the high number of 

data (10 000 sequences per sample). Indeed, large dataset requires more severe corrections for 

multiple tests (Desquilbet, 2015). In dogs affected with B. bronchiseptica infection, in comparison 

with heathy dogs, the LM was composed in majority by only one or two bacteria, a finding that has 

also been reported in dogs with CAP (Vientós-plotts et al., 2019). In pneumonia in man, the dominant 

pathogenic strain also usually represents the majority of the detected sequences (74% or more) 

(Dickson et al., 2016); a low alpha-diversity and low richness reflecting the high predominance of one 

or two bacteria are also described together with an increased bacterial load (Dickson, Erb-Downward 
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and Huffnagle, 2014). In the present study, we observed identical modifications since the α-diversity 

and the richness were drastically lower and the bacterial load higher in diseased compared with 

healthy dogs. These modifications are supported by the ecological modelling of the LM proposed by 

Dickson et al. (2014). In healthy individuals, the bacterial communities found in the LM are mainly 

determined by the balance between immigration and elimination while in injured respiratory tract, the 

local growth conditions are altered creating a pressure across bacterial members and improving the 

reproduction rate of adapted bacteria which results in an increase in the bacterial load and a decrease 

in the richness and the diversity, together with the emergence of dominating bacteria (Dickson, Erb-

Downward and Huffnagle, 2014). 

The prevalence of bacterial co-infections in dogs affected with B. bronchiseptica found in this 

study by sequencing is quite elevated (40%) in comparison with data from the literature, where 

bacterial co-infections are reported in 7.69% to 53% of cases (Viitanen, Lappalainen and Rajamäki, 

2015; Canonne et al., 2016; Decaro et al., 2016). Reported co-infecting bacteria in CIRD-C also found 

in that study by sequencing included M. cynos (Canonne et al., 2016), other Mycoplasma species 

(Viitanen, Lappalainen and Rajamäki, 2015; Decaro et al., 2016) and Pseudomonas sp. (Ford, 2012). 

Other bacteria with a relative abundance > 5% that have been associated with pneumonia such 

as Stenotrophomonas sp., Ureaplasma sp., Escherichia-Shigella sp. in dogs (Chalker, 2005; 

Rheinwald et al., 2015; Johnson et al., 2016; Lappin et al., 2017; Vientós-plotts et al., 2019), 

or Elizabethkingia meningoseptica in men (Jean et al., 2014) were found in that study. Although it is 

unclear if they are just colonizing or co-infecting bacteria, and if they could potentially play a role in 

CIRD-C. The high rate of co-infections in this study could be associated with the selection of the 

diseased dogs. Indeed, in CIRD-C, the disease is often self-limiting and resolves spontaneously within 

2 weeks without complications (Ford, 2012) while co-infections are usually associated with more 

severe and chronic clinical signs (Maboni et al., 2019). The diseased dogs were referral cases with 

clinical signs for a median duration of 1 month. Higher bacterial co-infection rate could also be related 

to underlying viral infection (Ford, 2012; Maboni et al., 2019), which was not assessed in this study. 

As previously reported and confirmed in this study, the qPCR is a very sensitive technique to 

diagnose B. bronchiseptica infection (Canonne et al., 2016). All infected dogs tested in this study had 

a positive qPCR result for B. bronchiseptica generally at moderate to very high load. The result of the 

culture was negative in 5/11 dogs which could partially be related to the fact that four of those dogs 

had recently been treated with antimicrobial drugs which may impair culture growth. Negative culture 

results have also already been described in dogs with B. bronchiseptica infection and could be 

associated with the sensitivity of the technique (Canonne et al., 2016). In man, it has been shown that 

the culture sensitivity in Bordetella sp. infections was lower than the PCR sensitivity (Reizenstein et 

al., 1993). In the present study, B. bronchiseptica was found by 16S rDNA amplicon sequencing in 
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high amount in all the diseased dogs. The results of the amplicon sequencing at each taxonomic level 

were correlated with the Ct classes and the culture results. Such good agreement between positive 

culture results and 16S rDNA sequencing results has already been reported (Vientós-plotts et al., 

2019), with a high relative abundance of the taxa found by culture. Also, as already reported, some 

ubiquitous bacteria identified by culture were not found with the 16S rDNA amplicon sequencing 

which could be due to a mis annotation of the SILVA database or to a contamination of the culture 

which could lead to errors in culture-based antimicrobial drug selection (Vientós-plotts et al., 2019). 

Other co-infecting and/or colonizing bacteria were detected by the sequencing, showing that the 16S 

rDNA amplicon sequencing can be an interested technique to identified new potential pathogens. 

Moreover, the sequencing depicts the global bacterial population on the contrary of the qPCR and 

culture. Indeed, the qPCR is specific of the targeted sequence and is not useful to detect new bacteria 

(Maddocks and Jenkins, 2017). Culture is quite challenging; some bacteria like Mycoplasma sp. 

requires specific culture conditions, some bacteria are unculturable and other bacteria are rare and 

slow growing and therefore may be missed (Woo et al., 2008). The present study has some limitations. 

Firstly, qPCR Ct and culture results were not available in all dogs. Moreover, the qPCRs were 

performed on different type of materials (frozen or fresh, pellet or crude BALF). Some dogs were 

treated with antimicrobial drugs at the time of sampling which could have an impact on culture, qPCR 

and sequencing results. Culture results of BALF samples from healthy dogs were not available. We 

consider that such results are not essential since our study focuses on the evaluation of the 16S rDNA 

amplicon sequencing technique in diseased dogs, in a clinical context. Besides, we have a quite limited 

number of control dogs and in order to compare age-matched groups, we have selected a 

subpopulation of our diseased dogs for the comparison. Indeed, although in dogs the effect of aging 

has not been studied, in man, the LM has been reported to be different in young children of less than 

3 years compared with adults (Dickson et al., 2016). Healthy dogs were not breed-matched with the 

diseased dogs. However, the breed impact on the LM seemed to be subtle (Fastrès et al., 2020a). No 

differences between the selection of diseased dogs and the rest of the diseased group were shown 

suggesting that the selection is representative of the diseased group.  
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Conclusion 

In dogs with CIRD-C and B. bronchiseptica infection, there is a major dysbiosis of the LM, 

characterized by high bacterial load, low richness and diversity and increased abundance of B. 

bronchiseptica, in comparison with healthy dogs. 

Co-infections, mostly with M. cynos, are frequent in CIRD-C dogs with B. 

bronchiseptica infection and could have an impact on the duration of the disease and the response to 

treatment. 

The sequencing results highly correlated with results obtained by specific qPCR of B. 

bronchiseptica and M. cynos and culture of B. bronchiseptica. Therefore, 16S rDNA amplicon 

sequencing is reliable to identify potential causal bacterial microorganism involved in lung infectious 

diseases, to understand the global interaction between bacteria in the lung and could be useful to 

identify new species potentially involved in respiratory diseases in dogs. 

In the future, with the development of 16S technologies, it could be interesting to include 

those analyses in the diagnostic work-up, mostly in dogs with a suspicion of lower airway infection, 

especially when the classical culture is negative or when there is no or only poor response to classical 

treatment. However, in such case, additional culture will still be needed to detect bacterial resistance to 

antimicrobial drugs.  
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Additional file 1. Comparison between the subpopulations of diseased dogs selected or not for the 

comparison with healthy dogs. 

Variable Subpopulation of 

diseased dogs selected 

to be compared with 

healthy dogs (n = 7) 

Subpopulation of 

diseased dogs not 

selected to be compared 

with healthy dogs (n = 

13) 

P-value 

Clinical findings Age (y) 0.99 (0.81-1.02) 0.51 (0.38-0.56) <0.001
†
 

Gender (F/M) 4/3 8/5  

BALF analysis TCC (cell/µL) 1300 (1040-3622) 1780 (1391-3510) 0.71
† 
 

Macrophages (%) 33 (15.8-47.2) 49 (13-66) 0.42
†
 

Neutrophils (%) 48 (35.8-68.5) 34 (21.5-77) 0.85
†
 

Lymphocytes (%) 9.5 (6.2-15.8) 7 (3-10) 0.20
†
 

Eosinophils (%) 2 (1-6.8) 1 (0-4.5) 0.42
†
 

Lung microbiota 

parameters 

β-diversity / / 0.30
††

 

α-diversity (Inverse 

Simpson index 

1.56 (1.08-1.92) 1.12 (1.08-1.98) 0.88
†
 

Richness (chao 

index) 

69.1 (54-94.8) 61.3 (37-98) 0.64
†
 

Evenness (Simpson 

derived index) 

0.034 (0.027-0.038) 0.045 (0.028-0.072) 0.28
†
   

Bacterial load (log 

16S rDNA copy 

numbers/mL) 

5.71 (5.47-5.92) 5.79 (5.66-6.04) 0.64
†
 

BALF, bronchoalveolar lavage fluid; 
†
, Mann-Whitney tests; 

††
, permutational analysis of variance. 

The subpopulation of diseased dogs selected to be compared with healthy dogs corresponds to the 

dogs n°3, 9, 14, 15, 18, 19 and 20 in the Table 1.
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Preamble 

The second part of the experimental section was dedicated to the analysis of the cell clusters in 

the BALF from healthy dogs and to the alteration in macrophage clusters in CIPF compared with 

healthy WHWTs (Study 4 and study 5).  

The scRNA-seq, a technique which has never been used in dogs before, was employed to 

identify cell clusters of the canine BALF (Study 4). Four healthy dogs from different breeds and ages 

were included. The study aimed to assess the feasibility of the technique in dogs as well to provide a 

base resource regarding cell populations and clusters of the canine BALF. A total of 5710 cells were 

analysed corresponding to 14,994 genes detected. Cells were clustered into 14 distinct clusters sharing 

similar transcriptomic profile and common at all the four dogs except for one cluster of minor cell 

number. The clusters were characterized as providing from eight different cells types including 

macrophages/monocytes (Ma/Mo) (50.4%), T lymphocytes (27.1%), neutrophils (4.1%), dendritic 

cells (DCs) (3.9%), B cells (1.2%), epithelial cells (9.5%), mast cells (1%) and cells in division 

(2.2%). Specific overexpressed markers were found in each of these cell types including MARCO, 

MSR1, HLA-DRB1, CD163, CD86, MRC1, CD68 and CD63 for Ma/Mo, CD3E and CD3D for T cells, 

SELL and ITGAM for neutrophils, CD1E, CD83 and CCR7 for DCs, BCR, FCRLA and CD19 for B 

cells, TFF3, TFF1 and KRT19 for epithelial cells, KIT, FCER1G and MS4A2 for mast cells and 

finally, PCALF, TOP2A and Ki67 for cells in division. Four distinct Ma/Mo clusters were found, 3 

were identified as AMs based on MARCO expression and were enriched in functions involved 

respectively in immune response and cell activation, regulation of the immune response, and cell 

homeostasis. The last cluster of macrophages was considered as either monocytes or monocyte-

derived macrophages. T cells included CD8
+
 and CD8

-
CD4

-
 clusters. Ciliated and non-ciliated 

epithelial cells as well as mature and immature DCs were also recorded. All these findings represent a 

highly useful dataset for the identification and subsequent interpretation of cell populations and 

molecular signatures alterations in future studies on canine lung diseases. 

We then analysed the cell clusters of the BALF from 5 WHWTs affected with CIPF compared 

to 3 healthy WHWTs which corresponded to 19,255 cells (6,703 from healthy and 12,552 from 

diseased dogs) coding for 11,722 genes (Study 5). Again, 14 cell clusters divided into the 8 cell types 

found in our first study were found and included 5 Ma/Mo clusters, CD8
+
 and CD8

-
CD4

-
 T cells, 

neutrophils, mature and immature DCs, B cells, epithelial cells, mast cells and cells in division. 

Among Ma/Mo, 2 clusters were identified as AMs, one as monocytes, one as monocyte-derived 

macrophages and the last one was not further identified. Significantly more monocytes were found in 

CIPF compared with healthy dogs. Monocytes and monocyte-derived macrophages were also enriched 

compared with the other Ma/Mo clusters in genes involved in profibrotic process including CCL2, 

SPP1, FN1, CCL3, TIMP1, IL1RN, CXCL8 and CCL4, and SFTPC, CCL5, FN1, CXCL8, ATP11A and 
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SPP1, respectively. DEGs between CIPF and healthy WHWTs were only found in monocyte-derived 

macrophages. Indeed, in CIPF dogs, monocyte-derived macrophages were enriched in genes 

associated with pro-fibrotic process including FN1, SPP1, CXCL8 and PLAU, angiogenesis including 

SPP1, VCAN and S100A4 and EMT including VIM, FN1, SPP1 and THY1. Results of that study are in 

favour for a role of monocytes and monocyte-derived macrophages in the onset and/or the 

perpetuation of CIPF in WHWTs. Although further studies are required, the present data offer promise 

for the better understanding of CIPF pathogenesis as well as for identification of the potential role of 

overexpressed profibrotic genes as biomarkers and/or therapeutic targets of the disease.  
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Abstract 

Single-cell mRNA-sequencing (scRNA-seq) is a technique which enables unbiased, high 

throughput and high-resolution transcriptomic analysis of the heterogeneity of cells within a 

population. This recent technique has been described in humans, mice and other species in various 

conditions to cluster cells in populations and identify new subpopulations, as well as to study the gene 

expression of cells in various tissues, conditions and origins. In dogs, a species for which markers of 

cell populations are often limiting, scRNA-seq presents with elevated yet untested potential for the 

study of tissue composition. As a proof of principle, we used scRNA-seq to identify cellular 

populations of the bronchoalveolar lavage fluid (BALF) in healthy dogs (n = 4). A total of 5710 cells 

were obtained and analysed by scRNA-seq. Fourteen distinct clusters of cells were identified, further 

identified as macrophages/monocytes (4 clusters), T cells (2 clusters) and B cells (1 cluster), 

neutrophils (1 cluster), mast cells (1 cluster), mature or immature dendritic cells (1 cluster each), 

ciliated or non-ciliated epithelial cells (1 cluster each) and cycling cells (1 cluster). We used for the 

first time in dogs the scRNA-seq to investigate cellular subpopulations of the BALF of dog. This study 

hence expands our knowledge on dog lung immune cell populations, paves the way for the 

investigation at single-cell level of lower respiratory diseases in dogs, and establishes that scRNA-seq 

is a powerful tool for the study of dog tissue composition.   
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Introduction 

The cells can be considered as the fundamental unit in biology. They are working in concert to 

respond to stimuli in order to maintain health. However, until recently, they were only characterized 

and distinguished using microscopy-based methods, flow cytometry, or bulk RNA sequencing, all 

techniques that are quite limiting for demonstration of cell heterogeneity (Herderschee et al., 2015; 

Proserpio and Mahata, 2015; Haque et al., 2017; Kiselev et al., 2019). With the development of next-

generation sequencing technologies, it is now possible to profile the transcriptome of each individual 

cell composing a sample. The single-cell mRNA sequencing (scRNA-seq) enables high throughput 

and high-resolution transcriptomic analysis of the cellular heterogeneity with an unbiased assessment 

of the cells as it gives the opportunity to identify cells without relying on previously known cell 

markers. It has become a powerful tool to identify cell subpopulations sharing similar transcriptome 

within a population, as well as to provide information related to cell fate, development, lineage, 

physiology, homeostasis and underlying molecular mechanisms (Haque et al., 2017; Stubbington et 

al., 2017; Papalexi and Satija, 2018). The use of this recent technique has been described in humans 

(Muraro et al., 2016; Mould et al., 2019; Suryawanshi et al., 2019), mice (He et al., 2018) and other 

species (Davie et al., 2018; Farnsworth et al., 2020) in various conditions and samples. In dogs, the 

use of this technique has not yet been reported so far.  

Bronchoscopy and combined analysis of the bronchoalveolar lavage fluid (BALF) are largely 

used in the diagnosis of canine lower airway diseases either acute or chronic (Finke, 2013; Nelson and 

Couto, 2014). In dogs, bronchoalveolar lavage is a well-tolerated procedure and few adverse effects 

are reported (Finke, 2013; Nelson and Couto, 2014). Common analyses performed on BALF include 

determination of total (TCC) and  differential cell counts (DCC) (including macrophages, neutrophils, 

lymphocytes, eosinophils and mast cells count), cytological examination of cytospin preparations, 

bacterial cultures and detection of specific respiratory pathogens using quantitative polymerase chain 

reactions (Finke, 2013; Nelson and Couto, 2014). Only few studies have characterized the lymphocyte 

populations in the canine BALF by flow cytometry (Dirscherl et al., 1995; Vail, Mahler and Soergel, 

1995; Clercx et al., 2002; Out et al., 2002; Spużak et al., 2008) while the other cell types have not 

been studied. In depth examination of BALF cellular composition and subpopulations as well as the 

comparison of these cell subpopulations in healthy and diseased conditions could lead to the 

identification of new cell subsets involved in disease and could help to better understand the 

pathophysiology of lung diseases, the cell adaptations in disease context as well as to find new or more 

specific therapeutic targets (Stubbington et al., 2017; Vegh and Haniffa, 2018).  

In this study, we aimed to use the scRNA-seq technique in healthy client-owned dogs to 

analyse BALF cell subpopulations. Results will contribute to provide a base resource regarding cell 
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subpopulations composing the BALF of healthy dogs which could be of great interest for further 

investigations of the BALF cell subpopulations in disease.  
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Materials and methods 

1. Dog population 

For the scRNA-seq analysis, BALFs were obtained from healthy dogs prospectively recruited 

at the veterinary clinic of the University of Liège (CVU, Liège, Belgium) between December 2017 and 

June 2018. All dogs were privately owned, and samples were obtained with owners’ consent. The 

study was validated by the ethical committee of the University of Liège (approval no. 1435).  

The healthy status of the dogs was confirmed by history, normal physical examination, blood 

work (plasma biochemistry and haematology), bronchoscopy and analysis of the BALF (including a 

macroscopic evaluation, a TCC and a DCC). Dogs from various breed and age were chosen to better 

represent the diversity of the canine population. 

2. Samples collection 

BALFs were obtained under anaesthesia with butorphanol at 0.2 mg/kg (Butomidor®, Richter 

Pharma AG, Wels, Austria) as premedication and propofol (Diprivan®, Asen Pharma Trading 

Limited, Dublin, Ireland) infusion on demand. 

Dogs were not intubated for the procedure. A bronchoscope (FUJINON© Paediatric Video-

Bronchoscope EB-530S), cleaned and disinfected using the washer-disinfector Serie 4 (Soluscope®, 

Aubagne, France), was inserted into the bronchi until the extremity was wedged. Three to four mL/kg 

of a sterile NaCl 0.9% solution divided into 3 aliquots were instilled through the endoscope channel 

into the lung (2 aliquots were obtained in the right diaphragmatic lobe and one in the left 

diaphragmatic lobe) and directly reabsorbed by gentle suction into the same sterile recipient. About 1 

mL of BALF was kept for total and differential cell count calculation performed using respectively a 

hemacytometer and a cytospin preparation (centrifugation at 221 g, for 4 minutes at 20°C, Thermo 

Shandon Cytospin©4), by counting a total of 200 cells at high power field. The rest of the BALF was 

then transferred within 15 to 20 minutes following collection on ice to the GIGA laboratory of Cellular 

and Molecular Immunology. 

3. Single-cell RNA sequencing 

a. BALF samples preparation 

BALFs were filtered to remove mucus and total cell count was assessed using 

haemocytometer and Türk coloration (Supplementary Table 1). BALFs were then centrifuged at 400 g 

for 7 minutes and the pellet resuspended in phosphate-buffered saline solution (Gibco
TM

 1x DPBS, 

Cat.14190-169) to obtain a cell concentration around 1,000 cells/µL. A second filtration through a cell 
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strainer (BD Falcon™, Biosciences, USA, Cat.352350) was performed to remove any remaining cell 

debris and large clumps and cells were again counted with Trypan blue staining to assess cell viability 

considered as acceptable above 70% (Supplementary Table 1). The volume of the cell suspension was 

then adjusted to obtain a final cell concentration between 500 and 1000 cells/µL suspended in 

phosphate-buffered saline solution containing 0.04% (w/v) bovine serum albumin (Supplementary 

Table 1).    

For each sample, approximatively 3500 cells (Supplementary Table 1) were loaded into the 

Chromium
TM

 Controller (10x Genomics, Pleasanton, CA, USA) approximatively 30 minutes after the 

first filtration and were then partitioned into nanolitre scale vesicles containing 10x barcoded beads 

from Chromium
TM

 Single Cell 3’ Gel Bead Kit v2 (10x Genomics, Pleasanton, CA, USA) according to 

manufacturer’s instructions. The following steps take place in the vesicles containing cell: [1] cell 

lysis, [2] capture of polyadenylated mRNAs oligonucleotides containing cell specific 16 bp barcode 

and 10 bp Unique Molecular Identifier (UMI) and [3] reverse transcription of mRNAs into cell 

specific barcoded cDNAs on a Veriti© 96-Well Thermal Cycler (ThermoFisher Scientific, Merelbeke, 

Belgium).  

b. Single-cell library preparation and sequencing 

Emulsion breakage, cDNA amplification and libraries construction were performed using 

Chromium
TM

 Single Cell 3’ Reagent kit v2 (10x Genomics, Pleasanton, CA, USA) according to 

manufacturer’s instructions as already described (Schyns et al., 2019). Briefly, cDNAs obtained were 

amplified in a Veriti© 96-Well Thermal Cycler. Amplified cDNA products were cleaned up, quality 

controlled and quantified. Illumina’s P5, P7 and Read2 primers, as well as Sample Index were then 

added to generate sequencing libraries. The barcoded sequencing libraries were also quality controlled 

and quantified by quantitative PCR (KAPA Biosystems Library Quantification Kit for Illumina 

platforms). Sequencing libraries were loaded on an Illumina NextSeq500. The sequencing depth was 

set at 50,000 reads per cell, taking into account that approximately 2000 cells should be captured (55-

60% efficiency). Cell Ranger software (v1.2.0) (10x Genomics, Pleasanton, CA, USA) was used to 

demultiplex Illumina BCL files to FASTQ files (cellranger mkfastq), to perform alignment to dog 

genome (CanFam3.1, GenBank assembly accession: GCA_000002285.2), filtering, UMIs counting 

and to produce gene-barcode matrices (cellranger count). 

c. Data analysis and visualization 

Analyses were performed using R package Seurat  (version 3.1.2) (Stuart et al., 2019). Briefly, 

we have first selected cells with a minimum of 100 and a maximum of 2,500 unique mapped genes to 

exclude low-quality cells or empty droplets and cell doublets or multiplets respectively. Only genes 
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present in at least 3 different cells were kept. Expression values were normalized to 10,000 transcripts 

per cell and the ‘FindVariableFeatures’ function was used to identify the top 2000 variable genes in 

each BALF sample. ‘FindIntegrationAnchors’ and ‘IntegrateData’ functions were used to combine the 

data of all BALF specimens, while minimizing batch effects. Next, a linear transformation using the 

‘ScaleData’ function was applied so that highly-expressed genes do not dominate. A principal 

component analysis (PCA) was performed on the scaled data using the command ‘RunPCA’. The 

statistically principal components taken into account for the next analysis were identified using the 

‘PCElbowPlot’ and the ‘DimHeatmap’ functions and were set to 1:30. A K-nearest neighbour graph, 

based on the Euclidean distance in PCA space and the Jaccard similarity index, was obtained using the 

‘FindNeighbors’ function. Cells were then clustered with the ‘FindClusters’ command based on the 

Louvain algorithm. Several cluster resolutions were tested, and the resolution of 0.3 was chosen, since 

higher resolutions created additional subdivisions of non-well-defined clusters or clusters containing 

singlets, which were considered not biologically relevant. The data were visualized by a non-linear 

dimensional reduction, the t-distributed stochastic neighbour embedding (t-SNE) plots, using the 

‘RunTSNE’ function, with the number of dimensions to use set to 30 (PC 1:30).  

Cell types within each cluster were characterized based on the identification of differentially 

expressed genes (DEGs) specific for each cluster compared to all others. The ‘FindMarkers’ function 

was used to identify DEGs across clusters. Clusters with the same identified cell type were also further 

characterized by comparing DEGs between each other. The differential expression was measured 

using non-parametric Wilcoxon rank sum tests adjusted for multiple testing with Bonferroni 

correction. Only DEGs with an adjusted P-value < 0.05 were retained. The genes not well annotated 

were further blasted on the Ensembl genome browser (v99.31) (Cunningham et al., 2019) for dog 

species to increase the annotation rate. Specific cell markers average expression and percentage of 

cells expressing the indicated genes within clusters were visualized with the ‘DotPlot’ function. 

Alternatively, the ‘FeaturePlot’ function was used to show specific gene expression within single cells.  

The different common biological processes between clusters with the same identified cell type 

were also assessed using the gene set enrichment analysis (GSEA) using the online GSEA-P software 

(Subramanian et al., 2005). GSEA was carried out by computing overlaps between significantly 

enriched genes calculated between clusters with the same identified cell type and gene ontology (GO) 

biological process gene sets using hypergeometric tests with Benjamini Hochberg correction for 

multiple testing (P-value adjusted). Only the 10 first gene sets that best overlapped with our gene set 

were retained.  
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4. Statistical analysis 

Single-cell mRNA sequencing data from the 4 samples were pooled for all analysis. A P-value 

lower than 0.05 was considered as significant. Details about statistical analysis for the scRNA-seq data 

and the gene set enrichment analysis can be found in the “Data analysis and visualization” section 

above.  
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Results 

1. Dogs population characteristics 

Four healthy client-owned dogs were recruited for the bronchoalveolar lavage procedure. The 

cohort was exclusively composed by adult females including one 4-year-old French bulldog, one 6-

year-old Australian shepherd, one 9-year-old West Highland white terrier and one 11-year-old 

Yorkshire terrier.  

2. BALF cells analysis 

Information about TCC and DCC for each BALF can be found in the Table 1. 

Table 1: Total and differential cell count in each bronchoalveolar lavage fluid. 

 BALF 1 BALF 2 BALF 3 BALF 4 

TCC, cells/µL 440 880 570 180 

DCC, % 

Macrophages 70 80 91 71 

Neutrophils 10 12 3 12 

Lymphocytes 18 5 3 10 

Eosinophils 1 3 1 2 

Mast cells 0 0 0 0 

Epithelial 

cells 
1 0 2 5 

BALF 1, female Yorkshire terrier of 11-year-old; BALF 2, female French bulldog of 4-year-old; BALF 

3, female West Highland white terrier of 9-year-old; BALF 4, female Australian shepherd of 6-year-

old; TCC, total cell count; DCC, differential cell count. 

3. Single-cell RNA sequencing 

The transcriptomic profile from a total of 5710 cells was obtained from each of the four BALF 

specimens using 10x Genomics based scRNA-seq analysis. Cells had a mean read depth of ~54,000 

reads per cell. Summary of sequencing and mapping quality control metrics for each BALF sample is 

presented in Table 2. The distribution of transcripts and genes counts can be found in the 

Supplementary Figure 2A and B.  

Cells from all dogs were compiled after identification of anchors using Seurat. The clustering 

in Seurat allowed the detection of 14 well-defined clusters (Figure 1A). The contribution of each 

individual sample in the compiled t-SNE figure is displayed in Figure 1B and C. Cells coming from 

each of the four BALF specimens were present in all identified clusters except for the cluster 11 which 

did not contain cells from BALF 1 (Figure 1C). The average expression of all transcripts detected by 

clusters is provided in the Supplementary Table 2.  
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Table 2: Metrics about mapping and characteristics of the detected cells of each BALF sample. 

 BALF 1 BALF 2 BALF 3 BALF 4 

Number of cells passing quality control 1,309  1,072 1,298 2,031 

Reads mapped confidently to genome, % 68.1 68.6 59.8 72.4 

Reads mapped confidently to transcriptome, % 26.5 30.4 23.9 30.7 

Median genes/cell 
485 (229-

1163) 

780 (350-

1313) 

834 (376-

1046) 

407 

(215.25-

953) 

Median UMIs/cell 

1020 

(321-

3351) 

1942 

(720-

4003) 

1888.5 

(678-2671) 

837 (430-

2669) 

Total genes detected 11,343 11,133 10.839 11,543 

Data were generated after passing quality control including the exclusion of cells with < 100 and > 

2500 genes. Reads mapped confidently to genome are the number of reads that mapped only to the 

genome. Reads mapped confidently to transcriptome are the fraction of the reads mapped to a unique 

gene in the transcriptome and are considered for UMI counting. Median genes per cell correspond to 

the median number of genes with at least one UMI count. Total genes detected is the detected number 

of genes with at least one UMI count in any cell. BALF 1, female Yorkshire terrier of 11-year-old; 

BALF 2, female French bulldog of 4-year-old; BALF 3, female West Highland white terrier of 9-year-

old; BALF 4, female Australian shepherd of 6-year-old; UMI, unique molecular identifier. 

The cell identity of each cluster was determined based on the DEGs in each cluster compared 

to all others. All DEGs are reported in the Supplementary Table 3. In each cluster, a selection of the 

most overexpressed transcripts able to differentiate cell types according to the literature is displayed in 

Table 3. Cells of clusters 0, 3, 5 and 8 expressing MARCO and/or MSR1 and/or HLA-DRB1 and/or 

CD163 and/or CD86 and/or MRC1 and/or CD68 and/or CD63 were identified as 

macrophages/monocytes (Mantovani et al., 2013; Gundra et al., 2014; Gibbings et al., 2015; Gibbings 

et al., 2017; Stifano and Christmann, 2016; Patel, Harris and Fitzgerald, 2017; Trombetta et al., 2018; 

Byrne et al., 2020). Cells of cluster 1 and 2 expressing CD3 markers were identified as T lymphocytes 

(Patel, Harris and Fitzgerald, 2017; Alcover, Alarcon and Bartolo, 2018). Cells of clusters 4 and 12 

expressing TFF1, TFF3 and KRT19 or just KRT19 respectively, were identified as epithelial cells (Yi 

and Ku, 2013; Emidio et al., 2019). Cells of clusters 7 and 13 expressing CD83 and either CD1E or 

CCR7 respectively, were identified as dendritic cells (DC). Finally, cells of cluster 6 expressing 

CD62L and ITGAM were identified as neutrophils (Condliffe et al., 1996), cells of cluster 9 expressing 

PCLAF, TOP2A and Ki-67 as cycling cells (Mould et al., 2019), cells of cluster 10 expressing BCR, 

FCRLA and CD19 as B lymphocytes (Volkova et al., 2007; X. Li et al., 2017b; Haran et al., 2020) and 

finally, cells of cluster 11 expressing MS4A2, FCER1G, KIT and CD63 as mast cells (Kabashima et 

al., 2018) (Table 3 and Figure 2). The proportions of the different identified cell types in the global 

dataset corresponded to 50.4% of macrophages/monocytes, 28.9% of lymphocytes B and T, 9.5% of 

epithelial cells, 4.1% of neutrophils, 3.9% of DC 2.2% of cycling cells and 1.0% of mast cells. Of 
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note, we were not able to identify eosinophils, cells known to be present in BALF (Nelson and Couto, 

2014). 

Figure 1: Compiled t-SNE plot of the cell clusters. (A) t-SNE plot of all cells (n = 5710) representing 

the cell clusters analysed by scRNA-seq. Each colour corresponds to one cluster assigned via the 

graph-based clustering method with a resolution of 0.3. (B) Batch alignment across bronchoalveolar 

lavage fluid (BALF) specimens, each colour representing the cells coming from one sample. (C) Bar 

plot showing the relative proportion of the cell from each BALF sample into each cluster. BALF 1, 

female Yorkshire terrier of 11-year-old; BALF 2, female French bulldog of 4-year-old; BALF 3, 

female West Highland white terrier of 9-year-old; BALF 4, female Australian shepherd of 6-year-old. 
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Table 3: Selection of significant DEGs able to differentiate cell type in each cluster based on literature. 
   Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10 Cluster 11 Cluster 12 Cluster 13 

 
  

Avg 

logFC 
pct  

Avg 

logFC 
pct  

Avg 

logFC 
pct  

Avg 

logFC 
pct  

Avg 

logFC 
pct  

Avg 

logFC 
pct  

Avg 

logFC 
pct  

Avg 

logFC 
pct  

Avg 

logFC 
pct  

Avg 

logFC 
pct  

Avg 

logFC 
pct  

Avg 

logFC 
pct  

Avg 

logFC 
pct  

Avg 

logFC 
pct  

Macro-

phages/ 

Monocytes 

markers 

MARCO 1.03 83 -1 48 -0.99 60 0.28 25 -0.97 0 0.35 94 -0.97 51 -0.95 38         -0.91 20 -0.96 0 -0.94 24 -0.96 27 

MSR1  0.99 88 -1.23 46 -1.2 59 0.63 35 -1.2 16         -1.24 17                 -1.22 20 -1.22 27 

HLA-DRB1  0.85 100 -1.18 84 -1.5 87     -3.27 26     -2.47 76 1.33 100 0.63 100         -3.25 19 -2.23 22 -2.1 73 

CD163 0.7 87 -1.31 24 -1.28 20 1.17 45 -1.25 14     -1.13 39             -1.22 16             

CD86 0.66 86 -1.27 52 -1.16 59 0.86 57 -1.31 0     -1.03 52 0.76 91 0.4 79 -0.80 50     -1.25 76 -1.22 16     

MRC1 0.6 91 -1.68 44 -1.69 54     -1.71 12 -0.52 92 -1.68 65     0.43 83     -1.51 43     -1.67 26 -1.6 20 

CD68 0.97 86 -1.19 36 -1.16 54     -1.18 0 0.84 96                 -1.13 27 -0.79 3 -1.01 18     

CD63 0.85 99 -0.98 64 -1.17 68 -0.26 49 -1 30 0.39 100 -0.5 43     0.32 97     -1.12 72 1.76 97 -0.51 33     

DC markers CD1E                             0.87 79 0.26 55                     

CD83 0.26 71 -1.06 7 -1.08 16     -0.78 17         0.57 83         -0.57 27     -1.04 8 2.63 100 

CCR7                                                      3.24 93 

T cells 

markers 
CD3E -1.75 58 1.37 77 1.54 87     -1.56 4     -1.57 55 -1.43 25     0.26 73                 

CD3D -1.6 56 1.41 72 1.39 83     -1.32 2 -1.39 55     -1.27 39                 -1.39 22     

Epithelial 

cells 

markers 

TFF3     -3.92 61 -4.15 67 -3.29 79 6.18 99 -4.17 93 -3.5 54             -3.24 77         -4.46 67 

TFF1     -3.31 58 -3.42 64 -2.31 78 5.4 95 -3.3 93 -2.66 77                 -3.82 81 -3.39 28     

KRT19 -1.84 60         -1.15 67 3.32 81     -1.66 52 -1.63 37         -1.64 60 -1.65 10 2.09 69     

Neutrophils 

markers 
SELL (CD62L) -0.25 72 -0.8 57 -0.91 48 -0.63 22 -1.18 7 -0.56 89 2.84 77 -0.6 82                 -1.19 14     

ITGAM                         1.47 71                             

Cycling 

cells 

markers 

ENSCAFG0000

0030087 

(PCALF) 

                                    2.75 96                 

TOP2A                                     1.43 82                 

ENSCAFG0000

0013255 (Ki67) 
                                    0.75 45                 

B cells 

markers 

ENSCAFG0000

0030258 (BCR) 
        -1.51 64 -1.19 47 -2.02 15 -1.99 75     -1.91 81         5.37 87 -2.29 39         

FCRLA                                         1.57 72             

CD19                                         0.77 59             

Mast cells 

markers 
MS4A2  -0.6 33 -0.51 39 -0.45 56 -0.39 75 -0.49 2     0.78 44             -0.33 11 3.71 78         

KIT                 -0.30 1         0.42 81             3.13 100         

FCER1G 0.58 98 -1.89 21 -2.17 49     -2.19 4     1.46 83     0.5 94     -2.08 58 2.21 92 -2.09 26     

The avg logFC was calculated by comparing each cluster to all other clusters. Only significant data were reported in the table (P < 0.05). DEGs, differentially expressed genes; Avg logFC, average 

log2 fold; pct, percentage of cells in the cluster expressing the gene; DC, dendritic cells. 
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Figure 2: Identification of cell identity corresponding to the clusters. t-SNE plot showing the cells 

identity based on the expression of differentially expressed genes representative of each cells type 

including genes coding for the macrophage receptor with collagenous structure (MARCO), the 

macrophage mannose receptor (MRC1, encoding CD206), the T-cell surface glycoprotein CD3 

epsilon chain (CD3E), the cytokeratin 19 (KRT19), the selectin (SELL, encoding CD62L), the integrin 

alpha M (ITGAM), the T-cell surface glycoprotein CD1e (CD1E), the CD83 molecule, the Fc receptor 

like A (FCRLA), the CD19 molecule, the DNA topoisomerase II alpha (TOP2A), the proliferating cell 

nuclear antigen clamp associated factor (ENSCAFG00000030087, encoding PCLAF), the membrane 

spanning 4-domains A2 (MS4A2) and the mast/stem cell growth factor receptor (KIT). DC, dendritic 

cell. 
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DEGs and biological processes were further compared between clusters sharing the same cell 

identity, namely macrophages/monocytes, T lymphocytes, epithelial cells and DC, to better 

characterize each cluster.  

The graph-based clustering of merged single-cells identified four transcriptionally distinct 

clusters of macrophages/monocytes. In this study, MARCO, a class A scavenger receptor involved in 

host defence and demonstrated to be highly expressed in embryonic-derived or alveolar macrophages 

(AMs) and not expressed in monocyte-derived macrophages was used to identify AMs (Gibbings et 

al., 2015; Byrne et al., 2020). MARCO was overexpressed in the clusters 0, 3 and 5 compared to all 

remaining clusters (Figure 2 and Supplementary Table 3).  

The first cluster of AMs (cluster 0) represented the majority of the macrophages/monocytes 

cells and showed a unique transcriptional signature including upregulation of transcripts coding for 

cell surface markers such as MHC-II molecules (e.g., DLA-DQA1, DLA-DRA, DLA-DMA), CD63, the 

Fc fragment of IgG receptor IIIa (FCGR3A, encoding CD16), the selectin L (SELL, encoding CD62L), 

the CD36 molecule, the CD68 molecule and the lysosomal associated membrane protein 2 (LAMP2) 

(Supplementary Table 4). Other most upregulated transcripts (average log2 fold change (avg_logFC) > 

0.5, P < 0.05) included the apolipoprotein E (APOE) known as an anti-inflammatory, anti-proliferative 

and immune-modulatory protein (Kockx, Traini and Kritharides, 2018) and transcripts involved in the 

immune response such as for example the bactericidal permeability increasing protein (BPI) and the 

complement C1q A chain (C1QA) (Figure 3 and Supplementary Table 4). The principal biological 

functions exerted by cells in cluster 0 are reported in Table 4.  

 

Figure 3: Single-cell mRNA-sequencing based 

identification of 4 distinct subpopulations of 

macrophages/monocytes in the bronchoalveolar 

lavage fluid of dogs. Dot plots showing the average 

expression of the indicated genes as well as the 

percentage of cells expressing the genes within each 

cluster of macrophages/monocytes. An example of 

transcripts significantly (P-value adjusted < 0.05) 

differentially upregulated (average log2 fold change 

> 0.5) between the clusters 0, 3, 5 and 8 are 

depicted. 
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Table 4: Top 10 gene set overlap between significantly upregulated genes in cluster 0, 3, 5 and 8 

compared to each other and the gene ontology (GO) biological process gene set. 

  

Gene Set Name Genes in 

Gene Set 

(K) 

Positive 

DEGs 

included 

Genes in 

Overlap 

(k) 

k/K FDR q-

value 

C
lu

st
er

 0
 v

s 
3

, 
5

 a
n

d
 8

 

Myeloid leukocyte activation 650 88 28 0.0431 1.23E-24 

Leukocyte mediated immunity 867 88 30 0.0346 3.06E-24 

Cell activation involved in immune response 705 88 28 0.0397 3.36E-24 

Myeloid leukocyte mediated immunity 550 88 26 0.0473 3.36E-24 

Exocytosis 899 88 29 0.0323 8.10E-23 

Immune effector process 1253 88 32 0.0255 1.42E-22 

Cell activation 1424 88 32 0.0225 6.03E-21 

Secretion 1638 88 31 0.0189 4.86E-18 

Defence response 1709 88 26 0.0152 2.40E-12 

Innate immune response 984 88 21 0.0213 2.50E-12 

C
lu

st
er

 3
 v

s 
0

, 
5

 a
n

d
 8

 

Response to cytokine 1192 251 45 0.0378 4.29E-18 

Regulation of immune system process 1631 251 47 0.0288 1.22E-14 

Positive regulation of protein metabolic process 1633 251 46 0.0282 3.81E-14 

Cell activation 1424 251 43 0.0302 3.81E-14 

Cell motility 1719 251 46 0.0268 1.95E-13 

Response to oxygen containing compound 1616 251 44 0.0272 4.45E-13 

Locomotion 1943 251 48 0.0247 6.01E-13 

Defence response 1709 251 44 0.0257 2.46E-12 

Regulation of cell activation 608 251 27 0.0444 3.06E-12 

Interspecies interaction between organisms 927 251 32 0.0345 7.69E-12 

C
lu

st
er

 5
 v

s 
0

, 
3

 a
n

d
 8

 

Myeloid leukocyte activation 650 62 16 0.0246 1.70E-11 

Myeloid leukocyte mediated immunity 550 62 15 0.0273 1.70E-11 

Exocytosis 899 62 17 0.0189 5.14E-11 

Cell activation involved in immune response 705 62 15 0.0213 2.91E-10 

Leukocyte mediated immunity 867 62 16 0.0185 2.91E-10 

Secretion 1638 62 20 0.0122 2.91E-10 

Cell activation 1424 62 18 0.0126 2.95E-09 

Immune effector process 1253 62 17 0.0136 3.90E-09 

Cellular homeostasis 971 62 14 0.0144 1.69E-07 

Homeostatic process 1913 62 18 0.0094 2.57E-07 

C
lu

st
er

 8
 v

s 
0

, 
3

 a
n

d
 5

 

Defence response 1709 59 20 0.0117 1.22E-09 

Cell motility 1719 59 19 0.0111 7.91E-09 

Cytokine mediated signalling pathway 787 59 14 0.0178 1.49E-08 

Locomotion 1943 59 19 0.0098 3.31E-08 

Inflammatory response 722 59 13 0.018 4.87E-08 

Leukocyte migration 488 59 11 0.0225 1.29E-07 

Response to cytokine 1192 59 15 0.0126 1.29E-07 

Response to bacterium 681 59 12 0.0176 2.45E-07 

Response to biotic stimulus 1023 59 13 0.0127 1.88E-06 

Regulation of immune system process 1631 59 15 0.0092 6.45E-06 

Gene set enrichment analysis carried on by computing overlaps between significantly upregulated 

genes (P < 0.05, avg_logFC > 0.25) and the gene ontology biological process gene set. "Genes in 

Gene Set" refers to the number of genes in the gene set, “Positive DEGs included” corresponds to the 

number of positive differentially expressed genes in the cluster of interest compared to the others and 

"Genes in Overlap" to the number of genes upregulated in the cluster and involved in the biological 

process. Avg_logFC, average log2 fold change. 
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Compared with macrophages composing clusters 0, 5 and 8, the AMs composing cluster 3 

overexpressed (avg_logFC > 0.5, P < 0.05) transcripts encoding cell surface markers such as the 

macrophage mannose receptor (MRC1, encoding CD206), the integrin subunit alpha 5 (ITGA5), the 

scavenger receptor CD163, the CD80 molecule and the CD83 molecule (Supplementary Table 4). The 

cells in cluster 3 also largely overexpressed transcripts (avg_logFC > 0.5, P < 0.05) encoding 

cytokines, including the interleukin 18 (IL18), the C-C motif chemokine ligand 4 and 5 (CCL4 and 

CCL5) and the interleukin 10 (IL10) (Figure 3 and Supplementary Table 4). Such combination of pro-

inflammatory and immunoregulatory cytokines is consistent with the enriched functional properties of 

the cells in cluster 3 which include regulation of the immune response and cell activation (Table 4). 

AMs in cluster 5, in comparison with cells from clusters 0, 3 and 8 also overexpressed 

transcripts encoding cell surface markers (avg_logFC > 0.5, P < 0.05), including the CD9 molecule, 

the CD5 molecule like (CD5L), CD68, the carcinoembryonic antigen related cell adhesion molecule 5 

(CEACAM5) and the CD300C molecule (Supplementary Table 4). The principal functions of AMs 

composing cluster 5 were quite similar to those associated with AMs in cluster 0. However, those cells 

seemed to be more involved in cellular homeostasis (Table 4), mostly metal ion homeostasis. Indeed, 

the most enriched transcripts in the cluster 5 were the metallothionein 1X (MT1X) and the 

metallothionein 2A (MT2A) which encode anti-oxidant proteins that are important in the homeostasis 

of metal in the cell, and in the detoxification of heavy metals (Figure 3 and Supplementary Table 4) 

(Zalewska, Trefon and Milnerowicz, 2014; Ling et al., 2016). 

The cells in cluster 8 compared with other clusters did not overexpress the transcript encoding 

MARCO and were not considered as AMs. Overexpressed transcripts coding for surface markers in 

cluster 8 compared with clusters 0, 3 and 5 included MHC-II (DLA-DQA1) and MHC-I (DLA-88) 

molecules, the tumour necrosis factor superfamily member 13b (TNFSF13B), the colony stimulating 

factor 2 receptor subunit beta (CSF2RB), the integrin subunit alpha X (ITGAX) and the CD1e molecule 

(Supplementary Table 4). The cells in cluster 8 were characterized by the overexpression (avg_logFC 

> 0.5, P < 0.05) of transcripts encoding cytokines including the interleukin 1 receptor antagonist 

(IL1RN), the C-C motif chemokine ligand 23 (CCL23), the C-C motif chemokine ligand 2 (CCL2) and 

the C-X-C motif chemokine ligand 10 (CXCL10) (Figure 3 and Supplementary Table 4). The high 

level of cytokine transcripts in cluster 8 is consistent with the enrichment for processes related to the 

inflammatory response, the defence response and the response to cytokines (Table 4). 

By looking at the DEGs and the GSEA between cluster 1 and cluster 2 corresponding each to 

T cells (Supplementary Table 5, and Table 5), we were able to characterize cells in cluster 1 as 

cytotoxic or CD8
+
 T cells. Indeed, the transcripts encoding granzyme B, K and A (GZMB, GZMK and 

GZMA respectively) were overexpressed with an avg_logFC > 1 in cluster 1 compared to cluster 2 

(Supplementary Table 5). Those genes are expressed by cytotoxic T lymphocytes and natural 
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killer cells (Lieberman, 2003; Hidalgo et al., 2008). Other transcripts with an avg_logFC > 1 in cluster 

1 compared to cluster 2 included the killer cell lectin like receptor D1 and K1 (KLRD1 and KLRK1 

respectively) also expressed primarily in natural killer cells and CD8
+
 T cells (Godlove, Chiu and 

Weng, 2007; Hidalgo et al., 2008). Finally, the CD8b molecule was also overexpressed in cluster 1 

(Supplementary Table 5).  

When comparing cluster 2 to cluster 1, enriched biological processes were more in favour of 

CD4
+
 T cells, as reported in table 5. Although classical surface marker of this cell type was not 

expressed by the cells in our dataset (e.g., CD4), the cells in cluster 2 overexpressed transcripts 

encoding for the interleukin 7 receptor (IL7R) and the CD40 ligand (CD40L) commonly found in 

CD4
+
 T cells (Lesley et al., 2006; Rodriguez-Perea et al., 2016). Principal overexpressed transcripts in 

cluster 2 included ICOS (inducible T cell costimulatory) an important costimulatory factor expressed 

in activated T cells (Hutloff et al., 1999; Tafuri et al., 2001; Lischke et al., 2012), PLAC8 (placenta 

associated 8), GATA3 (GATA binding protein 3) and ANXA1 (annexin A1) (Supplementary Table 5). 

Those transcripts are associated with the activation of CD4
+
 T cells, T cell differentiation in CD4

+
 T 

cells and immune response modulation (Rogulski et al., 2005; Zhu et al., 2006; Gavins and Hickey, 

2012; Huang et al., 2016), which is coherent with the functions of CD4
+
 T cells as reported in Table 5.  

Table 5: Top 10 gene set overlap between significantly upregulated genes in cluster 1 and 2 compared 

to each other and the gene ontology (GO) biological process gene set. 

  Gene Set Name Genes in Gene 

Set (K) 

Positive DEGs 

included 

Genes in 

Overlap (k) 

k/K FDR q-

value 

C
lu

st
er

 1
 v

s 
2

 

Regulation of immune system process 1631 24 13 0.008 1.85E-08 

Innate immune response 984 24 11 0.0112 2.20E-08 

Regulation of immune response 1094 24 11 0.0101 4.58E-08 

Natural killer cell mediated immunity 65 24 5 0.0769 9.46E-07 

Defence response 1709 24 11 0.0064 3.10E-06 

Regulation of natural killer cell chemotaxis 9 24 3 0.3333 2.26E-05 

Natural killer cell chemotaxis 11 24 3 0.2727 3.81E-05 

Lymphocyte mediated immunity 344 24 6 0.0174 5.41E-05 

Lymphocyte chemotaxis 62 24 4 0.0645 5.41E-05 

Cell activation 1424 24 9 0.0063 8.11E-05 

C
lu

st
er

 2
 v

s 
1

 

Regulation of lymphocyte activation 478 37 12 0.0251 1.38E-10 

Regulation of cell activation 608 37 12 0.0197 8.27E-10 

Regulation of T cell activation 313 37 10 0.0319 8.27E-10 

T cell activation 459 37 11 0.024 8.27E-10 

Regulation of cell death 1723 37 16 0.0093 2.23E-09 

Lymphocyte activation 721 37 12 0.0166 2.88E-09 

Apoptotic process 1980 37 16 0.0081 1.30E-08 

Biological adhesion 1417 37 14 0.0099 2.16E-08 

Cell activation 1424 37 14 0.0098 2.16E-08 

Leukocyte cell-cell adhesion 336 37 9 0.0268 2.16E-08 

Gene set enrichment analysis carried on by computing overlaps between significantly upregulated 

genes (P < 0.05, avg_logFC > 0.25) and the gene ontology biological process gene set. "Genes in 

Gene Set" refers to the number of genes in the gene set, “Positive DEGs included” corresponds to the 
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number of positive differentially expressed genes in the cluster of interest compared to the other and 

"Genes in Overlap" to the number of genes upregulated in the cluster and involved in the biological 

process. Avg_logFC, average log2 fold change. 

Diverse epithelial populations were captured and corresponded to clusters 4 and 12. Cluster 12 

was identified as composed by ciliated epithelial cells as it included functions such as cilium 

movement, microtubule-based process and movement, cytoskeleton and cell projection organization 

(Table 6). Indeed, the most enriched transcript in cluster 12 compared to cluster 4 included notably the 

transcripts encoding SNTN (sentan, cilia apical structure protein), DPCD (deleted in primary ciliary 

dyskinesia homolog (mouse)), ROPN1L (rhophilin associated tail protein 1 like), SPA17 (sperm 

autoantigenic protein 17) and WDR78 (WD repeat domain 78) for example (Supplementary Table 6). 

Table 6: Top 10 gene set overlap between significantly upregulated genes in cluster 4 and 12 

compared to each other and the gene ontology (GO) biological process gene set. 

  Gene Set Name Genes in 

Gene Set 

(K) 

Positive 

DEGs 

included 

Genes in 

Overlap 

(k) 

k/K FDR q-

value 

C
lu

st
er

 1
2

 v
s 

4
 

Microtubule based process 734 93 14 0.0191 7.90E-06 

Epithelial cilium movement 23 93 5 0.2174 7.90E-06 

Cilium movement 65 93 6 0.0923 2.00E-05 

Cytoskeleton organization 1298 93 17 0.0131 2.00E-05 

Microtubule based movement 277 93 9 0.0325 3.13E-05 

Regulation response to stress 1497 93 17 0.0114 8.91E-05 

Cell projection organization 1512 93 16 0.0106 5.00E-04 

Reproduction 1459 93 15 0.0103 1.49E-03 

Actin filament bundle organization 155 93 6 0.0387 1.59E-03 

Central nervous system development 980 93 12 0.0122 2.54E-03 

Gene set enrichment analysis carried on by computing overlaps between significantly upregulated 

genes (P < 0.05, avg_logFC > 0.25) and the gene ontology biological process gene set. No overlap 

was found between the gene set and upregulated genes of the cluster 4 compared to the cluster 12. 

"Genes in Gene Set" refers to the number of genes in the gene set, “Positive DEGs included” 

corresponds to the number of positive differentially expressed genes in the cluster of interest 

compared to the other and "Genes in Overlap" to the number of genes upregulated in the cluster and 

involved in the biological process. Avg_logFC, average log2 fold change. 

Cells in cluster 7 and 13 were identified as DC. Compared with cells in cluster 13, cells in 

cluster 7 overexpressed (avg_logFC > 1) transcripts coding for MHC-II and MHC-I molecules (i.e., 

HLA-DRB1, HLA-DQA1, DLA-DMA, DLA-DQA1, DLA-DRA, DLA-DOA, DLA-88 and DLA-79) 

(Supplementary Table 7) and their major functions concerned the activation of immune cells and the 

defence response.  

Overexpressed surface marker transcripts identified in cells of cluster 13 compared to cluster 7 

(avg_logFC > 1) included the C-C motif chemokine receptor 7 and the C-X-C motif chemokine 
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receptor 4 (CCR7 and CXCR4, respectively), the CD83 molecule and the programmed cell death 1 

ligand 2 (PDCD1LG2) (Supplementary Table 7). The major functions of cells in cluster 13 concerned 

mostly the regulation of the activation of immune cells (Table 7). Because of their overexpression of 

CD83 and CCR7, we considered that DC of cluster 13 correspond to mature DC (Xin et al., 2009; 

Wolkow, Gebska and Korbut, 2018). 

Table 7. Top 10 gene set overlap between significantly upregulated genes in clusters 7 and 13 

compared to each other and the gene ontology (GO) biological process gene set. 

  Gene Set Name Genes in 

Gene Set 

(K) 

Positive 

DEGs 

included 

Genes in 

Overlap 

(k) 

k/K FDR q-

value 

C
lu

st
er

 7
 v

s 
1

3
 

Cell activation 1424 218 59 0.0414 3.15E-31 

Myeloid leukocyte activation 650 218 43 0.0662 4.95E-30 

Myeloid leukocyte mediated immunity 550 218 38 0.0691 5.41E-27 

Cell activation involved in immune response 705 218 41 0.0582 1.26E-26 

Immune effector process 1253 218 51 0.0407 1.26E-26 

Exocytosis 899 218 44 0.0489 8.25E-26 

Leukocyte mediated immunity 867 218 43 0.0496 1.90E-25 

Secretion 1638 218 54 0.033 3.62E-24 

Defence response 1709 218 51 0.0298 1.02E-20 

Regulation of immune system process 1631 218 46 0.0282 1.96E-17 

C
lu

st
er

 1
3

 v
s 

7
 

Cell activation 1424 85 23 0.0162 2.66E-10 

Regulation of lymphocyte activation 478 85 14 0.0293 6.34E-09 

Lymphocyte activation 721 85 16 0.0222 6.34E-09 

Regulation of immune system process 1631 85 22 0.0135 6.34E-09 

Regulation of cell activation 608 85 15 0.0247 6.34E-09 

Regulation of T cell activation 313 85 12 0.0383 6.34E-09 

Response to biotic stimulus 1023 85 18 0.0176 8.72E-09 

T cell activation 459 85 13 0.0283 2.55E-08 

Cytokine production 759 85 15 0.0198 9.27E-08 

Response to cytokine 1192 85 17 0.0143 6.25E-07 

Gene set enrichment analysis carried on by computing overlaps between significantly upregulated 

genes (P < 0.05, avg_logFC > 0.25) and the gene ontology biological process gene set. "Genes in 

Gene Set" refers to the number of genes in the gene set, “Positive DEGs included” corresponds to the 

number of positive differentially expressed genes in the cluster of interest compared to the other and 

"Genes in Overlap" to the number of genes upregulated in the cluster and involved in the biological 

process. Avg_logFC, average log2 fold change.  
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Discussion 

In this paper, we report for the first-time a comprehensive single-cell expression profiling of 

the canine BALF cells in healthy condition. We were able to cluster cells in 14 distinct subsets 

identified as macrophages/monocytes, CD8
+
 T cells, CD4

+
 T cells, epithelial cells, ciliated epithelial 

cells, mature DC and DC, neutrophils, B cells, mast cells and cycling cells.  

 

Until recently, cells of the dog BALF were only characterized by microscopic evaluation or, in 

rare cases, by flow cytometry. The cell populations identified by these techniques included 

macrophages, CD4
+
 and CD8

+
 lymphocytes, neutrophils, eosinophils, mast cells and epithelial cells 

(Dirscherl et al., 1995; Vail, Mahler and Soergel, 1995; Rajamäki et al., 2001; Clercx et al., 2002; Out 

et al., 2002; Spużak et al., 2008; Finke, 2013; Nelson and Couto, 2014). With the use of the scRNA-

seq, we highlighted the presence of 14 subpopulations of cells using an unbiased technique. We were 

able to characterized the cells composing those subpopulations in depth and to deduce their main 

functions based on their transcriptome. In addition to offer a way to overcome the lack of qualitative 

reagents designed for flow cytometry in dogs, the scRNA-seq allows a better characterization of cell 

heterogeneity without prior knowledge by highlighting, in better agreement with pulmonary 

physiology, all cell types and cell functions. Indeed, the scRNA-seq provides comprehensive profiles 

of cells without limitations due to pre-selected cells by probing a few selected markers (Islam et al., 

2011; Stubbington et al., 2017; Papalexi and Satija, 2018; See et al., 2018; Vegh and Haniffa, 2018). 

 

Four subpopulations of macrophages/monocytes were found. Among them, 3 subpopulations 

corresponded to AMs based on their expression of MARCO (Gibbings et al., 2015; Byrne et al., 2020). 

AMs are the most abundant cells found in the airways in homeostatic conditions. They are self-

maintaining with minimal contributions from circulating monocytes in healthy conditions (Laar et al., 

2016; Ardain, Marakalala and Alasdair, 2019; Byrne et al., 2020). The first subpopulation of AMs, 

representing the major cell subpopulation, exerted functions involved in immune defence and 

response. The second was enriched in a combination of pro and anti-inflammatory cytokines 

transcripts and exerted functions involved in the regulation of the immune response. Finally, the third 

population had similar functions as the first with more implications in the homeostasis and the 

detoxification of metal ions. The last subpopulation was not considered as AMs and could correspond 

to monocytes-derived macrophages or monocytes. Indeed, the cluster was the smallest and expressed 

macrophages markers but not MARCO.  
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We found a large population of non-ciliated cells and a small population of ciliated cells 

corresponding to tracheobronchial epithelial cells. 

T lymphocytes were subdivided into 2 subpopulations identified as CD8
+
 and CD4

+
 with a 

majority of CD8
+
 T cells which was already reported in healthy dogs particularly in aged animals 

(Dirscherl et al., 1995; Spużak et al., 2008). Indeed, cells in cluster 1 expressed the CD8b molecule. 

However, cells in cluster 2 did not express neither CD8 nor CD4 while they overexpressed markers 

associated with classical CD4
+
 T cells such as GATA3, IL7R and the CD40 ligand (Lesley et al., 2006; 

Zhu et al., 2006; Huang et al., 2016; Rodriguez-Perea et al., 2016). The absence of CD4 mRNA 

expression could be due to weakness or absence of transcription of this protein (See et al., 2018). 

Indeed, in dogs, a population of CD8
-
CD4

-
 T cell has been described representing approximatively 

15% of the TCRαβ
+
 T cells in the lung, also expressing GATA3 (Rabiger et al., 2019). Cells from 

cluster 2 cells possibly belong to this population.  

B cells were identified using BCR, FCRLA and CD19 markers (Volkova et al., 2007; X. Li et 

al., 2017b; Haran et al., 2020). CD19 has only recently been described as B cell marker in dogs 

(Haran et al., 2020) which highlights the benefice of the scRNA-seq for the identification of new 

surface markers to better isolate different cell types (Stubbington et al., 2017; Papalexi and Satija, 

2018). Common B cell surface markers used and described in dogs include CD21 and CD79A 

(Faldyna et al., 2007). In this study, CD21 mRNA was not detected which could be due to absent or 

weak transcription of this protein (See et al., 2018). CD79A was expressed in B cells but its expression 

was low and it was not significantly differentially expressed in the cluster 10 compared to others.  

The identified granulocytic populations included neutrophils and mast cells. Basophils and 

mast cells shared common markers including MS4A2, KIT and FCER1G used in our study (Kabashima 

et al., 2018). However, overexpressed DEGs in cluster 11 cells also included chymase (encoding 

CMA1) and tryptase enzymes (encoding PPSAB1 and TSP2) which are almost entirely mast cell-

specific (Caughey, 2016; Kabashima et al., 2018; Varricchi et al., 2018). The cells in cluster 11 also 

expressed CD63 which is considered as one of the most useful markers of mast cell and basophil 

activation (Kabashima et al., 2018; Varricchi et al., 2018). We did not identify mast cells in BALF 1 

which is probably due to the small proportion of that cell type into BALF samples (Nelson and Couto, 

2014). Indeed, it represents only 1.0% of the total cells recovered in this analysis and it is possible that 

rare cell populations may not be properly captured with the 10X Genomics Chromium system (See et 

al., 2018). We were not able to identify a cluster of eosinophils, which are normally present in dog 

BALF specimens (Nelson and Couto, 2014). Although the number of eosinophils found in the BALF 

of healthy dogs is rather low (Nelson and Couto, 2014) and may not be properly captured, their total 

absence from our dataset is most likely related to their high content of RNase (Sattasathuchana and 
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Steiner, 2014) inducing the rapid degradation of mRNA, thus preventing their detection by scRNA-

seq.  

Finally, two subpopulations of DC were also found one being identified as mature DC because 

of its higher expression of CD83 and CCR7 (Xin et al., 2009; Wolkow, Gebska and Korbut, 2018).  

 

The use of the scRNA-seq in dogs has some limitations. The principal impediment to apply 

scRNA-seq to canine samples is the necessity to map sequenced RNAs on a sufficiently well 

annotated database to be able to identify genes. The percentage of reads mapped confidently to the 

transcriptome in this study was considered as low (~28%) as it is expected to be > 30% (10X 

Genomics, 2020). This can be due to a poor annotation of the reference transcriptome (overlapping 

genes for example), but could also be related to a poor library, sequencing or reads quality 
1
. However, 

despite this suboptimal mapping, we were able to identify cell clusters and deduce clusters principal 

functions based on the cell transcriptome obtained. Another limitation is the lack of information for 

the identification of specific cell markers in dogs. For example, in the 4 clusters identified as 

macrophages/monocytes, AMs were recognized only by their expression of MARCO. In the literature 

in human and mouse, the expression of SIGLECF, MERTK, CD14, CCR2 and Ly-6c are commonly 

used to distinguish AMs from monocytes and monocyte-derived macrophages (Misharin et al., 2013; 

Gibbings et al., 2015, 2017; McQuattie-Pimentel, Budinger and Ballinger, 2018; Mould et al., 2019; 

Schyns et al., 2019). However, those markers were not detected in our dataset. The use of the 10X 

Genomics Chromium system although being unbiased, time saving and allowing high throughput and 

high-resolution transcriptomic analysis, also implies that rare cell populations may not be properly 

captured and that sensitivity is reduced decreasing the detection of weakly expressed genes (See et al., 

2018). It is possible that common markers used to identify different cell types are only weakly 

expressed making cell populations difficult to identify. Finally, a limited number of dogs was used in 

the study. Indeed, as the use of the scRNA-seq is quite expensive, only 4 BALF samples were 

analysed with a relatively low median number of cells and reads per sample (~1,300 cells and ~54,000 

reads, respectively). The 4 selected dogs included young to old adult dogs from 4 breeds differing in 

size and body conformation, in order to be, as much as possible, representative of the whole healthy 

canine population, even if no males were sampled. However, we don’t expect the sex to alter BALF 

cells transcriptome. While it has been shown that the age could alter the cell proportions in the BALF 

from healthy dogs (Mercier et al., 2011), we are not aware of studies assessing its effect on BALF 

cells transcriptome either. To our knowledge, no study has specifically investigated the effect of the 

sex and the breed on canine BALF cells proportions and transcriptome. Besides, in the present study, 

cells coming from each of the four BALF specimens were present in nearly all identified clusters 

indicating that similar cell populations were present in all dogs.   
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Conclusion 

ScRNA-seq is a new technique which enables unbiased, high throughput and high-resolution 

transcriptomic analysis and which can be used to identify cell populations in the BALF of healthy 

dogs. In this study, we provide a comprehensive single-cell transcriptome tool. It represents a highly 

informative dataset for the identification and subsequent interpretation of cell populations and 

molecular signatures alterations in lung diseases in dogs.  
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Abstract 

Canine idiopathic pulmonary fibrosis (CIPF) affects old dogs from the West Highland white 

terrier (WHWT) breed and mimics idiopathic pulmonary fibrosis (IPF) in human. The disease results 

from deposition of fibrotic tissue in the lung parenchyma causing respiratory failure. Recent studies in 

IPF using single-cell RNA sequencing (scRNA-seq) revealed the presence of profibrotic macrophage 

populations in the lung, which could be targeted for therapeutic purpose. In dogs, scRNA-seq was 

recently validated for the detection of cell populations in bronchoalveolar lavage fluid (BALF) from 

healthy dogs. Here we used the scRNA-seq to characterize disease-related heterogeneity within cell 

populations of macrophages/monocytes (Ma/Mo) in the BALF from five WHWTs affected with CIPF 

in comparison with three healthy WHWTs. Gene set enrichment analysis was also used to assess pro-

fibrotic capacities of Ma/Mo populations. Five clusters of Ma/Mo were identified. Gene set 

enrichment analyses revealed the presence of pro-fibrotic monocytes in higher proportion in CIPF 

WHWTs than in healthy WHWTs. In addition, monocyte-derived macrophages enriched in pro-

fibrotic genes in CIPF compared with healthy WHWTs were also identified. These results suggest the 

implication of Ma/Mo clusters in CIPF processes, although, further research is needed to understand 

their role in disease pathogenesis. Overexpressed molecules associated with pulmonary fibrosis 

processes were also identified that could be used as biomarkers and/or therapeutic targets in the future.  
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Introduction 

Canine idiopathic pulmonary fibrosis (CIPF) is defined as a progressive and abnormal 

accumulation of collagen in the lung parenchyma that threatens alveolar gas exchange and reduces 

lung compliance causing cough, exercise intolerance, and, finally, respiratory failure and death 

(Clercx, Fastrès and Roels, 2018; Laurila and Rajamäki, 2020). The disease affects predominantly 

middle-aged to old dogs from the West Highland white terrier (WHWT) breed (Clercx, Fastrès and 

Roels, 2018; Laurila and Rajamäki, 2020). Although the cause of CIPF is not identified, a genetic 

aetiology is suspected as it affects mainly one breed. Confirmation of the diagnostic remains 

challenging due to absence of available diagnostic biomarkers and necessity to exclude other diseases 

and comorbidities. It currently relies on either thoracic high-resolution computed tomography (HRCT) 

or histopathology of the lung tissue or both. Despite a lot of researches on CIPF, the pathophysiology 

remains unclear and no curative treatment are available (Clercx, Fastrès and Roels, 2018; Laurila and 

Rajamäki, 2020).  

CIPF shares several clinical findings with human idiopathic pulmonary fibrosis (IPF). 

However, thoracic HRCT and histopathology show features associated with both human IPF and non-

specific interstitial pneumonia demonstrating that CIPF and IPF are not strictly identical (Clercx, 

Fastrès and Roels, 2018; Laurila and Rajamäki, 2020). In spite of those differences, studying CIPF in 

WHWTs is worth to better understand IPF. Indeed, dogs, like human, are subjected to various 

environmental stresses which can have an impact on lung cells especially alveolar macrophages (AMs) 

(Puttur et al., 2019). Moreover, CIPF is a disease that develops spontaneously in WHWTs (Clercx, 

Fastrès and Roels, 2018; Laurila and Rajamäki, 2020). Those characteristics make the dog a much 

more interesting model compared to the mouse experimental models. In human IPF and IPF mouse 

models, recent studies used single-cell mRNA sequencing (scRNA-seq) to detect altered cell 

populations compared with healthy conditions through an unbiased approach (Xu et al., 2016; Gokey 

et al., 2018; Xie et al., 2018; Aran et al., 2019; Morse et al., 2019; Peyser et al., 2019; Reyfman et al., 

2019; Zhang et al., 2019; Joshi et al., 2020; Tsukui et al., 2020). Indeed, the technique allows high-

throughput and high-resolution analysis of thousands of cells at the same time without requiring prior 

knowledge of cell markers to determine cell heterogeneity (See et al., 2018; Poczobutt and Eickelberg, 

2019; Stuart and Satija, 2019). With this method, a profibrotic role of specific macrophage and 

monocyte populations has been described in IPF patients and IPF mouse models (Aran et al., 2019; Ji 

and Fan, 2019; Morse et al., 2019; Peyser et al., 2019; Reyfman et al., 2019; Joshi et al., 2020). An 

increased number of macrophages and proliferating myeloid cells was found in bleomycin-induced 

lung fibrosis mouse models, in the beginning of lung fibrosis development, before fibroblastic 

infiltration (Peyser et al., 2019). Specific monocyte and macrophage clusters were identified in 

fibrosis conditions (Aran et al., 2019; Morse et al., 2019; Reyfman et al., 2019; Joshi et al., 2020). 
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AMs from IPF patients were enriched in functions involved in fibrotic processes including “extra-

cellular matrix organization” and “regulation of cell migration” for example (Reyfman et al., 2019). 

Pro-fibrotic macrophage but also monocyte clusters that expressed genes able to drive fibroblasts’ 

proliferation were localized in areas of fibrosis (Aran et al., 2019; Joshi et al., 2020). All these 

findings indicate that targeting specific macrophage and monocyte clusters could be potentially useful 

for the prevention and the therapy of lung fibrosis (Ji and Fan, 2019). 

Recently, cells of the bronchoalveolar lavage fluid (BALF) of healthy dogs have been 

characterized by scRNA-seq, providing a comprehensive single-cell expression profiling of the canine 

BALF cells in healthy conditions (Fastrès et al., 2020b). Fourteen distinct cell populations were 

identified including AMs (3 clusters), macrophages/monocytes (Ma/Mo) (1 cluster), CD8
+
 T cells, 

CD8
-
CD4

-
 T cells, B cells, neutrophils, mature and immature dendritic cells (DCs), ciliated and non-

ciliated epithelial cells, mast cells and cells in division (Fastrès et al., 2020b). 

The objective of this study was to characterize, using scRNA-seq, disease-related 

heterogeneity within Ma/Mo populations in the BALF from WHWTs affected with CIPF compared 

with healthy WHWTs.   



Chapter  3  Experimental section – Part 2 – Study 5 

  177 

Materials and methods 

1. Dog population 

The scRNA-seq analysis was performed on BALF obtained from WHWTs affected with CIPF 

and healthy WHWTs. Dogs were prospectively recruited between March and October 2018 at the 

veterinary clinic of the University of Liège (Liège, Belgium) according to a protocol approved by the 

ethical committee of the University of Liège (approval no. 1435). All dogs were privately owned, and 

samples were obtained with owners’ written consent.  

The healthy or CIPF status of the dogs was confirmed according to a previously described 

approach (Heikkila-Laurila and Rajamaki, 2014) based on history, physical examination, complete 

blood work, 6-minutes walked distance (6MWD), thoracic HRCT, bronchoscopy and analysis of the 

BALF (including macroscopic evaluation and total (TCC) and differential (DCC) cell count). WHWTs 

under treatment including antimicrobials drugs and corticoids were excluded from the study. 

2. BALF collection 

BALF was obtained using the same protocol as previously described (Fastrès et al., 2020b). 

Briefly, under general anaesthesia, a bronchoscope (FUJINON© Paediatric Video-Bronchoscope EB-

530S) was inserted into the lower airways of the dogs. Three to four mL/kg of sterile saline solution 

was instilled in the airways through the bronchoscope channel and directly reaspirated. A part of the 

crude BALF was used for TCC and DCC obtained using respectively a hemacytometer and a cytospin 

preparation. The rest of the collected fluid was then directly transferred on ice to the GIGA laboratory 

of cellular and molecular immunology (Liège, Belgium).  

3. Single-cell RNA sequencing 

ScRNA-seq was performed as already described (Schyns et al., 2019; Fastrès et al., 2020b). 

Briefly, BALFs were processed to obtain a final cell suspension containing between 500 and 1,000 

cells/µL suspended in phosphate-buffered saline solution (Gibco
TM

 1x DPBS, Cat.14190-169) 

containing 0.04% (w/v) bovine serum albumin. Cell viability assessed by Trypan blue staining was 

considered as acceptable above 80%. Details about BALF volume, final cell concentration and cell 

viability for each sample can be found in Supplementary Table 1. 

For each sample, approximatively 3500 cells (Supplementary Table 1) were loaded into the 

Chromium
TM

 Controller (10x Genomics, Pleasanton, CA, USA) and were then partitioned into 

nanolitre scale vesicles containing 10x barcoded beads from Chromium
TM

 Single Cell 3’ Gel Bead kit 

v2 (10x Genomics, Pleasanton, CA, USA) according to manufacturer’s instructions. Reverse 
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transcription of mRNAs took place into vesicles on a Veriti© 96-Well Thermal Cycler (ThermoFisher 

Scientific, Merelbeke, Belgium) after cell lysis and capture of polyadenylated mRNAs.  

Emulsion breakage, cDNA amplification and libraries construction were performed using 

Chromium
TM

 Single Cell 3′ Reagent kit v2 (10x Genomics, Pleasanton, CA, USA) according to 

manufacturer’s instructions as already described (Schyns et al., 2019; Fastrès et al., 2020b). Libraries 

were assessed for quality (2100 Bioanalyser Instrument; Agilent, Santa Clara, CA, USA) and then 

sequenced on a NextSeq500 instrument (Illumina, San Diego, CA, USA).  

Initial data pre-processing was performed using the Cell Ranger software (v1.2.0) (10x 

Genomics, Pleasanton, CA, USA). Reads were mapped to dog genome (CanFam3.1, GenBank 

assembly accession: GCA_000002285.2). The genes not well annotated were further blasted on the 

Ensembl genome browser (v99.31) (Cunningham et al., 2019) for dog species.  

Further data analyses were performed using R package Seurat  (version 3.1.2) (Stuart et al., 

2019) after the selection of the cells with a minimum of 100 and a maximum of 2,500 unique genes 

mapped, the selection of the genes found in at least 3 different cells and the normalization of the 

expression values to 10,000 transcripts per cell. ScRNA-seq data coming from each dog were then 

merged for the next analyses which were done by following Stuart et al. (2019) instructions (Stuart et 

al., 2019). Pre-ranked gene set enrichment analyses (GSEAs) were performed using GSEA-P software 

(v4.0.3) (Subramanian et al., 2005). The enrichment score was determined using weighted 

Kolmogorov–Smirnov-like statistic with false discovery rate (FDR) correction for multiple testing 

(Subramanian et al., 2005). A FDR cut-off of 25% was considered as appropriate (Subramanian et al., 

2005). GSEAs were computed between either the Gene Ontology (GO) Biological Process gene sets 

(v7.1) (Subramanian et al., 2005), or the Hallmark gene sets (v7.1) (Subramanian et al., 2005) or the 

Comparative Toxicogenomics Database Pulmonary fibrosis gene set (Davis et al., 2019). 

Differentially expressed genes (DEGs) in different conditions were obtained using the “FindMarkers” 

command in Seurat (Stuart et al., 2019). Differential gene expressions were measured using non-

parametric Wilcoxon rank sum tests adjusted for multiple testing with Bonferroni correction. Only 

DEGs with an average log2 fold change (avg_logFC) > 0.25 and an adjusted P-value < 0.05 were 

retained. 

4. Statistical analyses 

A P-value lower than 0.05 was considered as significant. Details about statistical analyses for 

scRNA-seq data and GSEAs can be found in the section above. Statistics used for the comparison of 

the WHWTs groups are reported in Tables 1, 3 and 4.  
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Results 

1. Study population 

BALF samples were obtained from 3 healthy WHWTs and 5 WHWTs affected with CIPF. 

Characteristics of the dogs included in the study are reported in Table 1. No significant differences in 

age, gender and weight were reported between the groups (Table 1).  

Table 1: Characteristics of the West Highland white terriers either healthy or affected with canine 

idiopathic pulmonary fibrosis included in the study. 

 Healthy WHWTs (n 

= 3) 

WHWTs affected 

with CIPF (n = 5) 

P-value 

Age, y 8.2 (5.4-8.7) 10.8 (10.2-12.7) 0.14
a
 

Gender, M/F 2/1 1/4 0.46
b
 

Weight, kg 8.4 (8.4-8.9) 9.5 (9.1-9.9) 0.14
a
 

6MWD, m 506.1 (478.8-513.0) 356.4 (356.1-366.3) 0.04
a
 

BALF 

analysis 

TCC, cells/µL 760 (665-770) 2,620 (2,500-3,285) 0.04
a
 

Macrophages, % 78 (76.5-84.5) 71 (64-82) 0.39
a
 

Neutrophils, % 3 (2.5-3.5) 10 (9-21) 0.04
a
 

Lymphocytes, % 11 (7-16) 7 (7-16) 0.93
a
 

Eosinophils, % 1 (1-4) 2 (1-2) 0.93
a
 

Mast cells, % 0 0 / 

Epithelial cells, % 1 (0.5-1.5) 1 (0-1) 0.46
a
 

Continuous data are not normally distributed according to the Shapiro-Wilk test and are then 

expressed in median and interquartile range. Groups were compared using either Mann-Whitney tests 

(
a
) or Chi-squared tests (

b
). WHWTs, West Highland white terriers; CIPF, canine idiopathic 

pulmonary fibrosis; M, male; F, female; 6MWD, 6-minutes walked distance; BALF, bronchoalveolar 

lavage fluid; TCC, total cell count. 

CIPF diagnosis was confirmed in all CIPF WHWTs by thoracic HRCT which revealed 

extensive ground-glass opacity in all dogs. Other HRCT findings included a combination of mosaic 

pattern, bronchial wall thickening, parenchymal and subpleural bands, bronchomalacia and 

bronchiectasis. Among WHWTs affected with CIPF, 3/5 (60%) had an history of both exercise 

intolerance and cough and 2/5 (40%) only exhibited exercise intolerance. Crackles were heard on lung 

auscultation in all dogs. Three dogs (60%) had a restrictive dyspnoea. Among them, 2 also exhibited 

cyanosis. The 6MWD covered by each dog was in favour of exercise intolerance in all CIPF dogs. 

Moreover, the distance was significantly reduced in CIPF compared with healthy WHWTs (Table 1). 

At echocardiography, signs of secondary pulmonary arterial hypertension were present in all CIPF 

dogs. Changes in BALF cells analysis were consistent with non-specific chronic lung inflammation 

(Table 1).  
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Among control WHWTs included in the study, all were clinically healthy and did not have any 

signs or findings indicating pulmonary disease. Echocardiography excluded the presence of cardiac 

disease in all of them. Thoracic HRCT did not reveal significant abnormalities. BALF cells analysis 

was unremarkable (Table 1). 

2. ScRNA-seq identifies multiple cell populations in the dog BALF 

Droplet-based scRNA-seq analysis of BALF cells was performed with a median read depth of 

∼43,000 reads per cell. In total, 19,255 cells (6,703 from healthy and 12,552 from diseased dogs) 

coding for 11,722 unique genes were included in the final analysis. The median detected genes per cell 

was 788 (interquartile range 399-1191 genes/cells, Table 2). Individual metrics about mapping and 

cells are displayed in Table 2, the individual distribution for transcripts and genes counts is illustrated 

in Supplementary Figure 1A and B, respectively. 

Table 2. Metrics about mapping and characteristics of the detected cells in each bronchoalveolar 

lavage fluid specimen. 

Data were generated after passing quality control including the exclusion of cells with < 100 and > 

2500 genes. Only genes present in more than 3 cells were kept. Reads mapped confidently to genome 

are the number of reads that mapped only to the genome. Reads mapped confidently to transcriptome 

are the fraction of the reads mapped to a unique gene in the transcriptome and are considered for 

UMI counting. Median genes per cell correspond to the median number of genes with at least one 

UMI count. Total genes detected is the detected number of genes with at least one UMI count in any 

cell. ID, identity; UMI, unique molecular identifier; WHWT, West Highland white terrier; CIPF, 

canine idiopathic pulmonary fibrosis. 

Cells from all samples were combined and aligned to account for sample variations among 

dogs using Seurat package in R (version 3.1.2) (Stuart et al., 2019). They were then clustered and 

Sample ID Diagnosis Number of 

cells passing 

quality control 

Reads 

mapped 

confidently 

to genome, 

% 

Reads mapped 

confidently to 

transcriptome, 

% 

Median genes/ 

cell (range) 

Median UMIs/ 

cell (range) 

Total 

genes 

detected 

WHWT 1 Healthy 3,060 67 24.4 741 (445-1,184) 1,711 (899-3,351) 12,354 

WHWT 2 Healthy 2,345 67.2 24.7 1,091 (585-

1,446) 

2,809 (1,173-4,398) 12,988 

WHWT 3 Healthy 1,298 59.8 23.9 834 (376-1,046) 1,889 (678-2,671) 10,839 

CIPF 1 CIPF 2,551 69.2 24.6 1,147 (827-

1,346) 

2,934 (1,857-3,740) 12,988 

CIPF 2 CIPF 2,686 67.3 23.4 618 (219-1,226) 1,362 (354-3,390) 12,478 

CIPF 3 CIPF 2,564 74.8 30.4 503 (355-969) 960 (601-2,247) 11,819 

CIPF 4 CIPF 2,556 71.5 28.1 867 (411-1,090) 1,939 (708-2,754) 11,722 

CIPF 5 CIPF 2,195 73.1 27.5 453 (383-722) 833 (656-1,622) 11,921 
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visualized using t-distributed stochastic neighbour embedding (t-SNE) plot with a resolution set at 0.3 

and a number of dimensions to use set to 30 which resulted in the identification of 14 clusters (Figure 

1A). After clustering, DEGs between each identified cluster were used to assign cell types to each 

cluster using previously established markers (Fastrès et al., 2020b). Cells populations found 

accordingly included Ma/Mo (5 clusters), CD8
+
 and CD8

-
CD4

-
 T cells, mature and immature DCs, 

neutrophils, B cells, epithelial cells, mast cells and cycling cells (Figure 1B). DEGs detected in each 

cluster are provided in Supplementary Table 2. Principal markers used to identify cell populations can 

be found in Figure 1D. Each cell population included cells coming from healthy and diseased dogs 

(Figure 1C and Table 3). No significant differences were reported in relative proportions of the 

different cell types between healthy WHWTs and WHWTs affected with CIPF, except for mature DCs 

(Table 3). 

Figure 1. Single-cell RNA sequencing analysis identifies multiple cell populations in the canine 

bronchoalveolar lavage fluids (BALFs). The scRNA-seq analysis was performed on a single-cell 
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suspension generated from 8 BALFs obtained from 3 healthy West Highland white terriers (WHWTs) 

and 5 WHWTs affected with canine idiopathic pulmonary fibrosis (CIPF). Cells were visualized using 

t-distributed stochastic neighbour embedding (t-SNE) plots. (A) Cell clusters identified. (B) Cell 

populations identified. (C) Cells are coloured according to the status of dogs either healthy or affected 

with CIPF. (D) Expression of differentially expressed genes representative of each cell population.  

Ma/Mo, macrophages/monocytes; DC, dendritic cell; MRC1, macrophage mannose receptor; 

MARCO, macrophage receptor with collagenous structure; CD163, scavenger receptor cysteine-rich 

type 1 protein M130; CD3E, T-cell surface glycoprotein CD3 epsilon chain; CD8b, T-cell surface 

glycoprotein CD8 beta chain ; CCR7, C-C chemokine receptor type 7 ; CD83, CD83 molecule; SELL, 

selectin; TOP2A, DNA topoisomerase II alpha; FCRLA, Fc receptor like A;  KRT19, cytokeratin 19; 

MS4A2, membrane spanning 4-domains A2. 

Table 3. Relative cells repartition between healthy and CIPF WHWTs in each cell population. 

 Healthy WHWTs CIPF WHWTs P-value 

Ma/Mo 69.5 ± 4.7 52.7 ± 26.3 0.332 

CD8
+
 T cells 10.9 ± 10.0 17.6 ± 15.4 0.533 

CD8
-
CD4

-
 T cells 7.1 ± 1.1 14.7 ± 9.0 0.210 

Immature DC 4.6 ± 3.1 3.7 ± 1.6 0.586 

Neutrophils 1.6 ± 2.1 4.5 ± 6.7 0.498 

Cycling cells 2.2 ± 0.5 1.8 ± 0.7 0.456 

B cells 1.5 ± 0.6 2.1 ± 1.4 0.557 

Mature DC 0.4 ± 0.1 2.1 ± 1.0 0.041 

Epithelial cells 1.0 ± 0.6 0.6 ± 0.2 0.160 

Mast cells 1.2 ± 1.8 0.3 ± 0.3 0.270 

Relative cell proportion were compared between healthy West Highland white terriers (WHWTs) and 

WHWTs affected with canine idiopathic pulmonary fibrosis (CIPF) using t-tests after verification of 

the distribution normality using Shapiro-Wilk tests. Data are expressed in mean percentage ± 

standard deviation. 

 

3. ScRNA-seq analysis reveals fibrosis-associated transcriptomic changes in Ma/Mo 

clusters 

3.1. Comparison between Ma/Mo clusters 

After Ma/Mo isolation from other cell populations, we repeated clustering on those cells to 

better characterize changes associated with CIPF. It resulted in the identification of 5 transcriptionally 

distinct Ma/Mo clusters (M0, M1, M2, M3 and M4) (Figure 2A). Average expression of all the genes 

expressed by each Ma/Mo cluster can be found in Supplementary Table 3. Relative contributions of 

each Ma/Mo cluster into each group of dogs either healthy or diseased are displayed in Figure 2B and 

C. Cells repartition between healthy and diseased WHWTs was similar into each cluster except in the 

cluster M2 which contained more cells in WHWTs affected with CIPF (Figure 2B, C and Table 4). 

We then estimated differential genes expression between each cluster of Ma/Mo and performed 
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GSEAs to better characterize Ma/Mo clusters independently of the disease status of the dogs. All 

DEGs identified in each cluster compared to others are displayed in Supplementary Table 4. Results of 

the enrichment analyses performed by mapping DEGs identified in each cluster compared to others, to 

Hallmark gene sets or GO Biological Process gene sets are provided in Supplementary Table 5.  

Figure 2. Macrophages/monocytes (Ma/Mo) clusters identified. Cells identified as Ma/Mo after the 

annotation of scRNA-Seq data obtained from 3 healthy West Highland white terriers (WHWTs) and 5 

WHWTs affected with canine idiopathic pulmonary fibrosis (CIPF) were selected and then clustered 

allowing the identification of 5 distinct clusters. (A) Clusters identified. Cells were visualized using a 

t-distributed stochastic neighbour embedding (t-SNE) plot. (B) t-SNE plot of Ma/Mo coloured 

according to the disease status of the WHWTs either healthy or affected with CIPF. (C) Bar plot of the 

relative proportion in each disease status of each Ma/Mo cluster. 

Table 4. Relative cells repartition between healthy and CIPF WHWTs in each Ma/Mo cluster. 

 Healthy WHWTs CIPF WHWTs P-value 

M0 73.6 ± 4.1 67.2 ±10.0 0.342 

M1 18.8 ± 4.1 14.2 ± 6.6 0.329 

M2 2.9 ± 0.2 13.5 ± 4.7 0.009 

M3 3.2 ±1.1 4.4 ± 1.8 0.356 

M4 1.4 ± 1.0 0.7 ± 0.4 0.185 

Relative cell proportion in each macrophages/monocytes (Ma/Mo) cluster were compared between 

healthy West Highland white terriers (WHWTs) and WHWTs affected with canine idiopathic 

pulmonary fibrosis (CIPF) using t-tests after verification of the distribution normality using Shapiro-

Wilk tests. Data are expressed in mean percentage ± standard deviation. 

Resident AMs were identified based on MARCO expression (Figure 3), a class A scavenger 

receptor (Gibbings et al., 2015; Gibbings et al., 2017; Reyfman et al., 2019; Fastrès et al., 2020b; 

Joshi et al., 2020) and corresponded to cells in clusters M0 and M3 (Figure 2A, Supplementary Tables 

3 and 4). They represented the majority of the cells composing Ma/Mo population (Figure 2A, C and 

Table 4). Cells in these clusters were enriched in biological processes relevant to AMs including 

“Hallmark reactive oxygen species pathways” for M0 cells and “GO adaptative immune response”, 
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“GO antigen processing and presentation of peptide or polysaccharide antigen via MHC class II”, “GO 

activation and regulation of immune response” and “GO pattern recognition receptor signalling 

pathway” for M3 cells (Supplementary Table 5). Cells in cluster M1 were considered as monocyte-

derived macrophages as they expressed markers from both macrophages, including MARCO, PPARG 

(encoding peroxisome proliferator activated receptor gamma), CD68, MRC1 (encoding macrophage 

mannose receptor, CD206), MSR1 (encoding macrophage scavenger receptor 1, CD204) and CD16 

(Gautier et al., 2012; Bharat et al., 2016; Stifano and Christmann, 2016; Yu et al., 2016; Reyfman et 

al., 2019; Byrne et al., 2020), and monocytes, including CD11c (encoding integrin subunit alpha X, 

ITGAX), CD16, CD49d (encoding integrin subunit alpha 4, ITGA4), CD49e (encoding integrin subunit 

alpha 5, ITGA5) and CX3CR1 (encoding fractalkine receptor) (Figure 3, Supplementary Tables 3 and 

4) (Ammon et al., 2000; Gundra et al., 2014; Bharat et al., 2016; Byrne et al., 2020). A cluster of 

monocytes which corresponded to cluster M2 was also identified. Indeed, M2 cells expressed only 

monocytes markers (Figure 3) including CSF2RB (encoding colony stimulating factor 2 receptor 

subunit beta, CD131), CD11c, CD11b (encoding integrin subunit alpha M, ITGAM), CD49d, CD49e 

and CX3CR1 (Figure 3, Supplementary Tables 3 and 4) (Ammon et al., 2000; Gundra et al., 2014; 

Croxford et al., 2015; Bharat et al., 2016; Byrne et al., 2020). Cells in cluster M1 were enriched in 

functions associated with the immune response activation including “Hallmark inflammatory 

response”, “GO interferon gamma production” and “GO leukocyte cell-cell adhesion”, while cells in 

cluster M2 were more involved in “GO leukocyte migration” and “GO cell motility” (Supplementary 

Table 5), functions essential when monocytes are recruited from blood into tissues. M4 cells also 

expressed macrophages and monocytes markers including notably MHC-II markers, CD63, CD68, 

CD16 and CD49d (Ammon et al., 2000; Gundra et al., 2014; Patel and Metcalf, 2019; Byrne et al., 

2020; Joshi et al., 2020), but they also overexpressed CD3 genes compared with other clusters (Figure 

3 and Supplementary Tables 3 and 4) which are known to be T-lymphocyte markers (Alcover, Alarcon 

and Bartolo, 2018). Enriched processes associated with M4 cluster were mainly focused on 

inflammatory response (Supplementary Table 5). 
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Figure 3. Differential genes expression analysis between macrophages/monocytes (Ma/Mo) clusters. 

Dot plot showing the expression of the principal gene markers used to characterize each Ma/Mo 

cluster. Dot size represents the percentage of cells expressing the genes, while the dot colour 

represents the average expression of the indicated genes. 

For each cluster independently of the animal status (healthy or affected with CIPF), we also 

performed a GSEA to determine whether overexpressed genes in each cluster, in comparison with 

other clusters, could be associated with signatures of pulmonary fibrosis using the Comparative 

Toxicogenomics Database Pulmonary fibrosis gene set (Davis et al., 2019). Only cells in cluster M1 

and M2 showed significant enrichment for pulmonary fibrosis with a normalized enrichment score 

(NES) of 1.87 and 1.85, respectively (FDR q-value = 0.007 and 0.002) (Figure 4A and B). 

Differentially overexpressed genes identified in relation with pulmonary fibrosis included SFTPC 

(encoding surfactant protein C), CCL5 (encoding C-C motif chemokine ligand 5), FN1  (encoding 
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fibronectin 1), CXCL8  (encoding C-X-C motif chemokine ligand 8), ATP11A (encoding ATPase 

phospholipid transporting 11A) and SPP1 (encoding osteopontin) in cluster M1 and CCL2  (encoding 

C-C motif chemokine ligand 2), SPP1, FN1, CCL3 (encoding C-C motif chemokine ligand 3), TIMP1 

(encoding metallopeptidase inhibitor 1), IL1RN (encoding interleukin 1 receptor antagonist), CXCL8 

and CCL4 (encoding C-C motif chemokine ligand 4) in cluster M2 (Figure 4C). M0 cells were 

negatively enriched for pulmonary fibrosis with a NES of -2.04 (FDR q-value = 0.002). The other 

clusters were not significantly associated with pulmonary fibrosis processes (FDR q-value = 0.145 and 

0.289 for cells of cluster M3 and M4, respectively). 

Figure 4. Enrichment in pulmonary fibrosis processes in M1 and M2 macrophages/monocytes clusters 

compared to others. (A-B) Gene set enrichment analyses between Comparative Toxicogenomics 

Database Pulmonary Fibrosis gene set and differentially expressed genes in M1 and M2 clusters, 

respectively, compared to others. (C) Dot plot showing the expression of genes involved in pulmonary 

fibrosis processes found to be upregulated in cluster M1 and M2 compared to others. Dot size 

represents the percentage of cells expressing the genes, while the dot colour represents the average 

expression of the indicated genes. 
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3.2. Comparison between animal status 

Differential gene expression between cells from healthy WHWTs and WHWTs affected with 

CIPF in each Ma/Mo cluster was also assessed (Supplementary Table 6) and was essentially found for 

cells in cluster M1. DEGs in cluster M1 between CIPF and healthy WHWTs were mapped to the 

Comparative Toxicogenomics Database Pulmonary fibrosis gene set to assess pulmonary fibrosis 

signatures. NES in pulmonary fibrosis processes was at 2.01 (FDR q-value = 0.008) (Figure 5A).  

Genes involved in pulmonary fibrosis processes found to be upregulated in CIPF compared with 

healthy WHWTs in cluster M1 included FN1, SPP1, CXCL8 and PLAU (encoding plasminogen 

activator urokinase) (Figure 5D-G). The differential expression between healthy and CIPF WHWTs of 

those molecules in all Ma/Mo clusters is illustrated in Supplementary Figure 2. Moreover, in cluster 

M1, enrichment analysis with Hallmark gene sets indicated that cells from CIPF WHWTs were 

enriched for processes known to be associated with fibrosis including “epithelial mesenchymal 

transition (EMT)” (Figure 5B) and “angiogenesis” (Figure 5C) (NES of 1.86 and 1.88; FDR q-value = 

0.039 and 0.068, respectively). Genes associated with these 2 gene sets and overexpressed in CIPF 

dogs included VIM (encoding vimentin), FN1, SPP1, THY1 (encoding Thy-1 cell surface antigen, 

CD90) for “EMT” gene set and SPP1, VCAN (encoding large fibroblast proteoglycan) and S100A4 

(encoding S100 calcium binding protein A4) for “angiogenesis” gene set (Supplementary Table 6). 
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Figure 5. M1 macrophages/monocytes cluster enrichment in pulmonary fibrosis processes in CIPF 

compared with healthy dogs. (A-C) Gene set enrichment analyses in M1 cluster between differentially 

expressed genes in West Highland white terriers (WHWTs) affected with canine idiopathic pulmonary 

fibrosis (CIPF) compared to healthy WHWTs and the Comparative Toxicogenomics Database 

Pulmonary fibrosis gene set and epithelial mesenchymal transition and angiogenesis Hallmark gene 

sets.  (D-G) T-distributed stochastic neighbour embedding (t-SNE) plot of cluster M1 cells showing 

overexpressed genes in CIPF compared with healthy WHWTs, associated with pulmonary fibrosis 

according to the Comparative Toxicogenomics Database Pulmonary fibrosis gene set. Colour 

represents the average expression of the indicated genes.  
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Discussion 

In this study, we analysed Ma/Mo clusters in the BALF from healthy WHWTs compared with 

WHWTs affected with CIPF. Five Ma/Mo clusters were identified. Among them, we described a 

cluster of monocytes present in larger proportion in CIPF WHWTs than in healthy WHWTs. 

Expression of cells in this cluster was enriched for pulmonary fibrosis processes and 8 genes 

associated with fibrosis were overexpressed in this cluster including CCL2, SPP1, FN1, CCL3, 

TIMP1, IL1RN, CXCL8 and CCL4. We also identified a cluster of monocyte-derived macrophages 

enriched for inflammatory and pulmonary fibrosis processes in which the gene expression differed 

between CIPF and healthy WHWTs with an enrichment for pulmonary fibrosis but also EMT and 

angiogenesis processes. We identified 4 overexpressed genes associated with pulmonary fibrosis 

processes in CIPF compared with healthy dogs in this cluster including FN1, SPP1, CXCL8 and 

PLAU.  

In this study, similar cell populations and clusters were identified compared with previously 

published data on scRNA-seq analysis in BALFs from healthy dogs and included Ma/Mo, T cells 

either CD8
+
 or CD8

-
CD4

-
, DCs either mature or immature, neutrophils, B cells, epithelial cells, mast 

cells and cycling cells (Fastrès et al., 2020b). We were not able to differentiate between ciliated and 

non-ciliated epithelial cells which can be due to either the low proportion or the absence of ciliated 

epithelial cells in our samples (Nelson and Couto, 2020) as rare cell populations may be missed using 

scRNA-seq (See et al., 2018). As already reported (Fastrès et al., 2020b), eosinophils were not 

identified using scRNA-seq, probably secondary to their RNase content conducting to the degradation 

of mRNAs in those cells (Sattasathuchana and Steiner, 2014).  

In healthy conditions, lung macrophages are known to be extremely heterogeneous and play a 

crucial role in the regulation of the homeostasis of the lung. In addition to their immune defence 

function, they also exerted an indispensable role in organ development, maintenance of homeostasis 

and repair (Ji and Fan, 2019; Puttur et al., 2019). In the lung, the majority of the macrophages are 

AMs which are resident and self-renewing macrophages (Puttur et al., 2019). They have been 

identified in this study by their expression of MARCO and corresponded to cells of cluster M0 and M3 

(Gibbings et al., 2015; Puttur et al., 2019; Fastrès et al., 2020b). In inflammatory conditions, the lung 

is rapidly infiltrated by recruited monocytes which gradually differentiate into monocyte-derived 

macrophages and then AMs (Puttur et al., 2019). Here, we observed a higher proportion of monocytes 

(cells from cluster M2) in CIPF dogs that are probably recruited secondary to lung fibrosis in higher 

proportion than in healthy dogs. This increased number of macrophages and myeloid cells was also 

reported as an early event in bleomycin-induced lung fibrosis mouse model (Peyser et al., 2019). As 

M2 cluster cells were enriched in pulmonary fibrosis processes, we suggest that their increased 
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proportion in CIPF condition could participate to the onset and/or to the perpetuation of the fibrosis 

process in WHWTs.  

The Ma/Mo involved in pro-fibrotic processes in this study can be considered as immature 

macrophages as they were identified as either monocyte-derived macrophages (cluster M1) or 

monocytes (cluster M2). Recently, transcriptomic profiling of macrophages collected over the time 

course of bleomycin induced fibrosis showed that during monocyte maturation, genes linked to fibrosis 

are most highly expressed during their differentiation and progressively downregulated with the 

maturation of the cells into AMs (Misharin et al., 2017). This is in line with results obtained in this 

study and suggests that recently recruited macrophages (clusters M1 and M2) have greater fibrotic 

capacity than mature AMs (clusters M0 and M3). Targeting those particularly pro-fibrotic recruited 

immature macrophage clusters could be a potential novel strategy for the prevention and the therapy of 

CIPF. 

DEGs between healthy and CIPF WHWTs were essentially found in the M1 cluster. 

Moreover, M1 cells in CIPF dogs were enriched for EMT, angiogenesis and pulmonary fibrosis 

processes. EMT is considered as one of the phenomena by which collagen-producing fibroblasts and 

myofibroblasts accumulate, creating a pro-fibrotic environment (Salton, Volpe and Confalonieri, 

2019). Indeed, epithelial cells differentiate to acquire features of mesenchymal cells including 

invasion, migration and production of extracellular matrix (Salton, Volpe and Confalonieri, 2019). 

Altered EMT process is the most widely accepted pathogenetic mechanism in IPF patient (Salton, 

Volpe and Confalonieri, 2019) and could also participate in the development of CIPF as suggested by 

this study. Angiogenesis is another well-known mechanism involved in IPF, which is targeted by 

Nintedanib, an anti-angiogenesis molecule used in human for its properties against the vascular 

endothelial growth factor (VEGF) pathway (Rivera-ortega et al., 2018). Involvement of angiogenesis 

in CIPF has only been assessed through the measurement of VEGF concentration in serum without 

results ( Roels et al., 2015a). To the authors’ best knowledge, none of the molecules identified in the 

present study and linked to angiogenesis has been studied in CIPF. 

Among genes found to be associated with pulmonary fibrosis processes, only CCL2 and 

CXCL8 have already been associated with CIPF (Clercx, Fastrès and Roels, 2018). Indeed, it has been 

shown that mRNA expression of CXCL8 and CCL2 was increased in CIPF lungs compared with 

controls (Clercx, Fastrès and Roels, 2018). Moreover, CCL2 and CXCL8 chemokine concentrations 

were increased in CIPF WHWTs compared with healthy WHWTs in both serum and BALF and only 

in BALF respectively (Clercx, Fastrès and Roels, 2018). The osteopontin (SPP1 gene) is a 

glycoprotein secreted by numerous cell types including macrophages which has been proved to be 

closely related to IPF (Berman et al., 2004; Pardo et al., 2005; Dong and Ma, 2017; Morse et al., 

2019; Wang et al., 2019). Indeed, high level of expression and increased BALF protein concentration 
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have been reported in IPF mouse models but also in IPF patients (Pardo et al., 2005). Such findings 

suggest that osteopontin could be used as a potential biomarker and a therapeutic target for treating 

fibrotic lung diseases (Dong and Ma, 2017). The fibronectin 1 (FN1 gene) is a mediator of cell matrix 

adhesions. It promotes myofibroblast differentiation and is found in abundance in the lungs of IPF 

patients (Upagupta et al., 2018). CCL3 and CCL4, also known as macrophage inflammatory protein 1-

alpha and beta, are chemoattractant cytokines (Capelli et al., 2005; Bhavsar, Miller and Al-Sabbagh, 

2015; Lee et al., 2018) suspected to play a role in sustaining inflammation and the chronic course of 

IPF by recruiting inflammatory cells such as neutrophils (Capelli et al., 2002; Capelli et al., 2005; Lee 

et al., 2018). Their expression in CIPF dogs could be related to the higher rate of neutrophils found in 

the BALF of CIPF compared to healthy dogs. The tissue inhibitor of metalloproteinase 1 (TIMP-1 

gene) probably contributes, through its control of matrix metalloproteinase catalytic activity, to 

provide a non-degrading fibrillar collagen microenvironment in IPF patient as well as in IPF mouse 

model (Selman et al., 2000; Pardo et al., 2016). It has also a potential value as biomarker in patients 

with IPF (Todd et al., 2020). The interleukin-1 receptor antagonist (encoding IL-1RA) is a cytokine 

produced by alternatively activated AMs. The protein level was increased in IPF patients compared 

with healthy volunteers (Stahl et al., 2013; Schupp et al., 2015) and in patients with acute exacerbation 

of IPF compared with stable IPF patients suggesting that this protein could be of interest as diagnostic 

and prognostic marker (Schupp et al., 2015). The role of the plasminogen activator urokinase (PLAU 

gene) in pulmonary fibrosis is not clear. The protein level has been showed to be low in BALF of IPF 

patient (Günther et al., 2000; Schuliga et al., 2018) and the molecule was showed to be protective 

against fibrosis development in IPF mouse model (Navaratnam et al., 2014). Recently, the protective 

role of the plasminogen activator was controverted as its presence was associated with increased 

plasmin formation which in turn activates structural and inflammatory cells driven fibrosis (Schuliga 

et al., 2018). PLAU overexpression in this study indicates that fibrinolytic processes are present in 

CIPF dogs. Whether it is protective or not remains unclear. Further studies are needed to better assess 

the potential role of all these molecules in CIPF pathogenesis and their utility as biomarkers of disease 

progression and as potential therapeutic target. 

The present study had some limitations. First, the analysis of scRNA-seq data remains limited 

by the poor annotation of canine genomic dataset highlighting the need for further studies to optimize 

the use of this technique in healthy and diseased dogs. Indeed, the percentage of reads mapped 

confidently to the transcriptome had to be from at least 30% (10X Genomics, 2020), which is not the 

case in this study. Secondly, our study involved a relatively low number of dogs either healthy or 

affected with CIPF. Indeed, even if the transcriptomic profiling costs are falling, the use of the 

scRNA-seq remains currently quite expensive. However, even with this small number of subjects and 

with the lack of annotation of the canine genome, we were able to identify the different cell 

populations, their genes expression and their DEGs in CIPF condition. We were also able to detect the 
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genes already identified as involved in CIPF such as CXCL8 and CCL2. Finally, it should be noted 

that in some Ma/Mo clusters, DEGs included markers normally expressed by other cell types, mainly 

in M4 cluster which expressed Ma/Mo and T cells markers. This likely results from contamination 

from ambient RNA released during BALF processing. This contamination is a known limitation that 

can occur in scRNA-seq experiments (Zheng et al., 2017; Hwang, Lee and Bang, 2018). Another 

explanation would be that these cells are in fact doublets. Doublets are a known confounding factor in 

scRNA-seq analysis (Ilicic et al., 2016) that can be reduced by decreasing cell number introduced in 

the Chromium
TM 

Controller
 
(Bloom, 2018)

 
and by filtering out cells with a really high gene count 

(Ilicic et al., 2016) as it was done in this study.    
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Conclusion 

Using scRNA-seq in BALF specimens from healthy WHWTs and WHWTs affected with 

CIPF, we were able to reveal the presence of pro-fibrotic monocytes, more abundant in CIPF than in 

healthy WHWTs, reflecting the inflammation that occurs in fibrotic lung. The presence of those 

monocytes enriched with pro-fibrotic genes probably participates to the onset and/or the perpetuation 

of CIPF in WHWTs. Moreover, monocyte-derived macrophages enriched in pro-fibrotic genes in 

CIPF compared with healthy WHWTs were also identified. This cluster was also enriched with EMT 

and angiogenesis processes, which are known to play an important role in IPF.  

The results of that study offer promise for the better understanding of the role of macrophages 

in CIPF pathogenesis and the identification of new biomarkers and therapeutic targets to better 

diagnose, follow and treat the disease.   
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Discussion - Perspectives 

In this work we firstly aimed to characterize the LM in dogs and to describe alterations of the 

LM especially in WHWTs affected with CIPF.  

The LM was poorly studied in dogs at the beginning of this work as stated in the introduction. 

Therefore, our first objective was to describe the LM in healthy dogs and to identify the parameters 

able to alter it before assessing LM modifications associated with CIPF. In healthy conditions, we 

were able to confirm that the LM is quite stable in adult dogs (Study 2), as already reported by 

Ericsson and colleagues (2016). It is not surprising since the stability of the LM in adults has also been 

confirmed in men, mice and rats (Barfod et al., 2015; Dickson et al., 2015; Finn et al., 2018). By 

regrouping reports common to all studies published on the LM in healthy dogs, including ours (Study 

1 and study 2), comprising a total of 88 dogs (37 experimental beagles and 51 client-owned dogs from 

different breeds), we postulated that the core LM in dogs (bacteria common for all healthy dogs) was 

composed by four major phyla including Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes 

and included at least Cutibacterium, Streptococcus, Acinetobacter and Pseudomonas genera (Ericsson 

et al., 2016; Roels et al., 2017c; Fastrès et al., 2017b).  

Predictable modifications of the LM were encountered after oral antimicrobial drug 

administration in healthy dogs (Study 1), an effect previously reported in mice and rats (Barfod et al., 

2015; Dickson et al., 2018; Finn et al., 2019). The majority of the changes induced by antimicrobial 

drug administration returned to normal within approximatively 2 weeks after the drug discontinuation 

indicating that a wash-out period of 2 weeks should be sufficient to avoid antimicrobial drug effect on 

the LM in dogs. However, in our study, we used AC, an antimicrobial drug commonly used as first-

line antibiotic in dogs with lower respiratory disease, and it should be remembered that the use of 

another antimicrobial drug in diseased dogs could have a different effect and duration on microbial 

communities. We also showed that differences in dogs’ living conditions were associated with 

alterations of the LM (Study 2). Indeed, LM clustered separately between experimental and domestic 

living conditions. An environmental impact on the LM is not surprising as the LM is suspected to 

largely result from bacterial immigration (microaspiration, bacterial inhalation, and direct mucosal 

dispersion) (Dickson et al., 2016). Differences in the type of food by affecting the gut microbial 

composition can then alter lung bacteria due to microaspirations. Moreover, the housing conditions 

and the geographical area impact the bacterial composition of inhaled air (Gleeson, Eggli and 

Maxwell, 1997; Dickson et al., 2016; Dickson, Erb-Downward, et al., 2017; Huang et al., 2020). 

Indeed, bacterial communities of indoor area were shown to be affected by outdoor factors such as 

vegetation, urbanization and airborne particulate matter (Weikl et al., 2016). Differences reported in 

LM between dogs from the same breed but living in different countries also tend to confirm that 

geographic position of the dogs, and more globally their environment, have an impact on the LM 
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(Ericsson et al., 2016; Fastrès, et al., 2017b; Fastrès et al., 2019; Fastrès et al., 2020a). Of note, 

differences in the LM of experimental beagles reported between the study from Ericsson and 

colleagues (2016) and our results (Study 1 and study 2) could also come from differences in 

procedures both to obtain the samples and to analyse the LM (Beck, 2014; Marsh et al., 2018; Boers, 

Jansen and Hays, 2019). Increased standardization of studies on LM in dogs but also in other species 

would be beneficial to allow results from such studies to be compared with more confidence. Finally, 

we showed a mild but significant impact of the breed on the LM (Study 2).  

We then investigated changes of the LM in an acute pulmonary disease and validated the use 

of the 16S rDNA amplicon sequencing technique to identify bacteria in canine lung infection (Study 

3). In dogs with confirmed B. bronchiseptica pulmonary infection, a dysbiosis of the LM was 

observed.  Indeed, we described a shift in the β-diversity with an increase in bacterial load associated 

with a decrease in α-diversity and richness. LM was dominated by one or two bacteria which mainly 

corresponded to B. bronchiseptica and M. cynos, a common co-infective bacterium found in CIRC-D 

(Priestnall et al., 2014; Maboni et al., 2019). Similar changes in the LM were also reported in acute 

respiratory diseases in other dogs and men (Dickson, Erb-Downward and Huffnagle, 2014; Dickson et 

al., 2016; Vientós-plotts et al., 2019). In our study, other bacteria present in a relative abundance of 

more than 5% and considered as potentially co-infective were also identified. Some were already 

described in CIRC-D like other Mycoplasma species (Viitanen, Lappalainen and Rajamäki, 2015; 

Decaro et al., 2016) and Pseudomonas sp. (Ford, 2012), and others were reported as pathogen in 

pneumonia in dogs and/or in men like Stenotrophomonas sp., Ureaplasma sp., Escherichia-

Shigella sp. and Elizabethkingia meningoseptica  (Chalker, 2005; Jean et al., 2014; Rheinwald et al., 

2015; Johnson et al., 2016; Lappin et al., 2017; Vientós-plotts et al., 2019). Although it is not clear 

whether those bacteria were just colonizing or co-infective, they could have had an impact on disease 

progression and response to treatment. Indeed, in CIRD-C, more severe and chronic clinical signs 

have been associated with the presence of co-infections (Maboni et al., 2019), and our diseased 

population included referral cases with median clinical signs duration of 1 month. Finally, a good 

agreement was found between results obtained with 16S rDNA amplicon sequencing and traditional 

techniques used to diagnose pulmonary infections in dogs such as culture and qPCR. Such agreement 

was also reported by Vientós-plotts and colleagues (2019). Taken together, results of this study 

revealed the benefit of the use of 16S rDNA amplicon sequencing to find new potential pathogens as 

well as rare and slow-growing bacteria. More generally, this technique shows a more global vision of 

all bacterial changes which could help clinicians, in complement with conventional bacterial detection 

techniques, to guide antimicrobial drugs and to predict disease outcomes and response to treatment as 

established in human acute respiratory disorders (Woo et al., 2008; Dickson et al., 2017b; Johansson 

et al., 2019; Vientós-plotts et al., 2019; Dickson et al., 2020). Indeed, in human with pneumonia and 

parapneumonic effusions, for example, the percentage of bacterial detection was significantly higher 
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using 16S rDNA amplicon sequencing compared to conventional culture (Johansson et al., 2019). In 

the majority of the cases, the same organism was identified by both techniques as it was the case in our 

study and in the study from Vientós-plotts and colleagues (2019). In addition, in ARDS and critically 

ill patients, some LM parameters like the detection of bacteria commonly associated with the gut (e.g., 

species of the Lachnospiraceae, Bacteroidaceae and Enterobacteriaceae families) and the increase in 

lung bacterial load have been associated with systemic inflammation and poorer outcomes (Dickson et 

al., 2017; Dickson et al., 2020).  

In CIPF dogs, we found that LM alterations are more likely associated with the breed than 

with the disease (Study 2). Except for the identification of Brochothrix and Pseudarcicella as 

discriminant genera, no statistical differences were highlighted between diseased and healthy 

WHWTs. Brochothrix, Curvibacter, Pseudarcicella and a genus belonging to Flavobacteriaceae 

family were significantly increased in healthy WHWTs compared with other breeds and higher in 

CIPF compared with healthy WHWTs but not significantly. As those bacteria are preferentially found 

as contaminant in food and water (Ding and Yokota, 2010; Kasalický et al., 2013; Hahn et al., 2014; 

McBride, 2014; Stanborough et al., 2017) and could then be ingested by the dogs and be part of the 

proximal gut microbiota, we postulated that their presence in CIPF dogs could be related to the higher 

rate of GER reported in this breed (Määttä et al., 2018). The specific LM found in WHWTs could be 

associated with their predisposition to CIPF. 

In human IPF, a correlation between blood cell transcriptomic profile and the LM was found 

by using network analysis (Huang et al., 2017; Molyneaux et al., 2017b). For example, overexpression 

of transcripts involved in bacterial and immune response were associated with higher bacterial load, 

the presence of specific bacteria such as Neisseria and the diagnosis of IPF (Molyneaux et al., 2017b). 

In addition, the increase abundance of Streptococcus was associated with a reduce in expression of 

immune-response genes and both of these changes correlate with disease progression (Huang et al., 

2017). In transplanted lungs, specific changes in the LM were associated with distinct innate cell gene 

expression profiles. In particular, the presence of specific bacteria was shown to alter macrophage 

gene expression into pro-inflammatory (e.g., Staphylococcus and Pseudomonas), or remodelling 

profiles (e.g., Prevotella and Streptococcus) (Bernasconi et al., 2016). In this work, we don’t explore 

the association between LM dysbiosis and BALF immune cell expression profile that we assessed in 

the second part of this work. Indeed, in absence of a clear association between a disturbed LM and the 

disease, such analysis was considered as not relevant. We think that the LM alterations in CIPF dogs 

should be assessed in larger independent cohorts of dogs to confirm changes associated with the 

disease before any further investigations related to the association between specific LM disturbances 

and specific macrophage polarization. Follow-up studies starting before the onset of the disease, as 

well as during CIPF course would be required to better assess the role of LM in CIPF predisposition 
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and progression, as well as its utility as potential diagnostic and/or prognostic biomarker. Such studies 

however require to screen regularly a large number of apparently healthy ageing WHWTs during a 

prolonged period of time until they get the disease or die from another cause. Although we started to 

enrol dogs in the screening and follow-up program, much more cases are needed. Another concern is 

related to the fact that confirmation of CIPF is challenging, especially in early cases as stated in the 

introduction. Finally, comparing the LM with the oral microbiota and the proximal gut microbiota in 

WHWTs could be useful to validate our hypothesis related to increased microaspirations at the origin 

of the enrichment of water and food bacteria in the LM of WHWTs as a potential trigger of CIPF 

development and maintenance. 

 

For the second part of this work, we wished to characterize BALF cell populations using an 

unbiased technique which has never been used in dogs before and to assess the presence of specific 

pro-fibrotic macrophage clusters in WHWTs affected with CIPF compared with healthy ones.  

We first validated the use of the scRNA-seq in the BALF of healthy dogs (Study 4). The use 

of the scRNA-seq allowed the identification and the description of 14 cell clusters corresponding to 8 

different cell populations including Ma/Mo, T cells, neutrophils, DCs, epithelial cells, B cells, mast 

cells and proliferating cells. Among those populations, only macrophages, T cells, neutrophils, mast 

cells and epithelial cells were previously described in canine BALF samples by cytology and/or flow 

cytometry (Dirscherl et al., 1995; Vail, Mahler and Soergel, 1995; Clercx et al., 2002; Out et al., 

2002; Spużak et al., 2008; Finke, 2013; Nelson and Couto, 2014). Unfortunately, we were not able to 

find eosinophils, a cell type commonly found in BALF (Nelson and Couto, 2014). This is probably 

due to their high content of RNAse able to destroy RNAs preventing their detection by transcriptomic 

analysis (Sattasathuchana and Steiner, 2014). Cell populations identified by scRNA-seq in healthy 

canine BALF were similar to cell populations found in healthy human BALF. Indeed, in human, 

macrophages, neutrophils, T cells, natural killer cells, DCs, B cells, mast cells and epithelial cells have 

been described in scRNA-seq studies (Morse et al., 2019; Liao et al., 2020).  In addition to the 

identification of new cell populations in canine BALF, the scRNA-seq also allowed to better 

characterize cells by clustering them based on their transcriptome, measuring DEGs between clusters 

and deducing their main functions. Indeed, BALF cell clusters were found for Ma/Mo, T cell, DC and 

epithelial cell populations in dogs. Three clusters of AMs were described, exerting functions in 

immune defence and response, immune response regulation, and cell homeostasis and detoxification 

of metal ions, respectively. A fourth macrophagic cluster was found and corresponded to monocytes or 

monocyte-derived macrophages. Epithelial cells were subdivided into ciliated or non-ciliated cells, T 

cells into CD8
+
 and CD4

-
CD8

-
, and DCs into mature and immature DCs. Except for T cells, cell 

clusters have not yet been investigated in term of transcriptome and principal functions in BALF from 



Chapter 4  Discussion - Perspectives 

  208 

healthy dogs (Dirscherl et al., 1995; Vail, Mahler and Soergel, 1995; Clercx et al., 2002; Out et al., 

2002; Spużak et al., 2008; Finke, 2013; Nelson and Couto, 2014). Thanks to this work, we showed 

that scRNA-seq can be used in canine BALF and could also probably be used in other types of canine 

samples. We also highlighted the benefit to use scRNA-seq to better analyse cell heterogeneity and 

functions in an unbiased way. Finally, this canine BALF cell atlas provides an interactive and 

accessible resource to allow cell specific changes in gene expression exploration, in healthy and 

diseased lung, which is susceptible to accelerate discovery and translation to other species. 

We then investigated macrophage clusters in CIPF compared with healthy WHWTs (Study 5). 

Indeed, aside from their antimicrobial role, macrophages have been largely involved in the 

pathogenesis of fibrotic lung diseases and are considered as potent source of profibrotic molecules 

including TGF-β1, PDGF, FGF, IGF1, VEGF, MMPs, tissue inhibitor of metalloproteinases, 

chemokines, etc. (Kolahian et al., 2016; Desai et al., 2018; Heukels et al., 2019). In IPF mouse 

models, depletion of Ma/Mo was shown to reduce pulmonary fibrosis, while their adoptive transfer 

during fibrogenesis was shown to exacerbate fibrosis (Gibbons et al., 2011). Moreover, depending on 

the cellular and environmental context, macrophages can exert pro-fibrotic and pro-inflammatory 

effects (Desai et al., 2018; Zhang et al., 2018). Both of these effects can promote fibrosis by 

preventing ECM degradation, and maintaining tissue inflammation causing alveolar epithelium 

injuries, respectively (Heukels et al., 2019). In CIPF WHWTs, specific pro-fibrotic macrophage 

clusters were found in BALF samples overexpressing genes associated with pulmonary fibrosis, 

angiogenesis and EMT processes. These findings suggest a role for macrophages in CIPF 

pathogenesis.  

In man, specific pro-fibrotic macrophage clusters were also identified by scRNA-seq in IPF 

patients. In all scRNA-seq studies on IPF, pro-fibrotic macrophage clusters were characterized by 

overexpression of SPP1 which was suggested to be the hallmark for pro-fibrotic macrophages in IPF 

patients (Morse et al., 2019; Reyfman et al., 2019; Adams et al., 2020). Macrophages overexpressing 

SPP1 were suggested to have a role in activation of myofibroblasts and ECM development (Morse et 

al., 2019; Adams et al., 2020). Reports of studies in lung tissue of fibrosis mouse models, in which 

SPP1 expression and protein level were increased, support the role for SPP1 in the ECM production 

and hence the fibrosis development in the lung (Takahashi et al., 2001; Berman et al., 2004; Dong and 

Ma, 2017). Indeed, in lung fibrosis mouse models, deletion of SPP1 was shown to reduce upregulated 

expression of FN1 and collagen type 1, two major proteins involved in the formation and the 

remodelling of fibrotic ECM, as well as MMP2 (Berman et al., 2004; Dong and Ma, 2017). TGF-β1 

induction and activation, fibroblasts accumulation and activation, and myofibroblast accumulation 

were also reduced compared to a lung fibrosis mouse model non depleted for SPP1 (Dong and Ma, 

2017). Similarly to reports on IPF and lung fibrosis mouse models, SPP1 was also overexpressed in 
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our 2 pro-fibrotic macrophage clusters when compared to all others and overexpressed in diseased 

compared with healthy dogs in monocyte-derived macrophages. The overexpression of this transcript 

in our identified pro-fibrotic macrophage clusters tends to validate their involvement in the fibrosis 

process occurring in CIPF.  

The overexpression of other pro-fibrotic molecules found in CIPF pro-fibrotic macrophage 

clusters such as CCL2, CXCL8, FN1, TIMP1 and IL1RN was also reported in pro-fibrotic macrophage 

clusters in IPF (Morse et al., 2019; Reyfman et al., 2019). At the protein level, an increase in BALF 

and serum CCL2 concentration and in BALF CXCL8 concentration was found in CIPF compared with 

healthy WHWTs, which is in line with our results (Roels et al., 2015b). However, none of the other 

overexpressed molecules have yet been investigated at the protein level in the disease.  

Finally, in our study, pro-fibrotic monocytes and monocyte-derived macrophages don’t seem 

to arise as a new population in CIPF WHWTs. Indeed, the 2 clusters are present in both healthy and 

CIPF WHWTs. However, differences were found between healthy and diseased WHWTs in both 

clusters. Monocytes were present in greater proportion in diseased compared to healthy WHWTs and 

monocyte-derived macrophages showed transcriptomic modifications between healthy and diseased 

dogs. The presence of same Ma/Mo clusters in IPF as in normal lungs was also reported by Morse and 

colleagues (2019) who also described transcriptomic modifications between healthy and diseased 

lungs including an increase in SPP1 expression in IPF lungs. 

Although a role for neutrophils, T cells, DCs and mast cells was described in IPF (Heukels et 

al., 2019), we failed to identify DEGs between CIPF and healthy WHWTs in those cell types. 

However, an increase number of neutrophils at cytology was reported in CIPF compared with healthy 

WHWTs which is in agreement with previous studies in CIPF WHWTs on BALF cell count analysis 

(Heikkila-Laurila and Rajamaki, 2014). The increase in neutrophils could be related to the 

overexpression of CCL3 and CCL4 in pro-fibrotic monocytes, also reported in IPF, which are known 

to be chemoattractant cytokines for neutrophils (Capelli et al., 2002, 2005; Lee et al., 2018; Heukels et 

al., 2019).  

The identification and detailed description of aberrant Ma/Mo populations in the CIPF BALF 

may lead to identification of novel cell type–specific therapies and biomarkers which rises a lot of 

perspectives for CIPF research. The best candidates as biomarkers and/or therapeutic targets in 

overexpressed pro-fibrotic molecules included FN1, SPP1 and CXCL8 which were overexpressed in 

pro-fibrotic monocytes and in monocyte-derived macrophages compared to other Ma/Mo clusters and 

which were also overexpressed in CIPF compared with healthy WHWTs in monocyte-derived 

macrophages. As already said, CXCL8 protein concentration was already investigated for its potential 

utility as biomarker and was increased in BALF samples between CIPF and healthy WHWTs (Roels et 
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al., 2015b). FN1 is considered as one of the most dominant components of ECM with collagens I and 

III (Upagupta et al., 2018). It is found in abundance in IPF lungs and is essential for myofibroblasts 

differentiation (Upagupta et al., 2018). In addition, human macrophagic FN1 expression and 

production was increased in IPF patients and this macrophagic-produced FN1 was shown to recruit 

fibroblasts inducing lung architectural distortion (Rennard et al., 1981; Morse et al., 2019; Reyfman et 

al., 2019). Targeting such molecule or macrophages-producing FN1 could be useful to reduce 

fibroblasts accumulation and differentiation. As already said, SPP1 seems to be the hallmark of pro-

fibrotic macrophages identified in pulmonary fibrosis by scRNA-seq and has a role in fibrosis 

development (Morse et al., 2019; Reyfman et al., 2019; Adams et al., 2020). Next to its potential 

utility as biomarker in CIPF, SPP1 is also suggested to be targeted as treatment in human IPF (Dong 

and Ma, 2017) and could represent a good option in CIPF dogs according to our results. In lung 

fibrosis mouse models, a link was also found between SPP1 and FN1. Indeed, as already said, mice 

depleted for SPP1 showed a decrease in FN1 expression associated with a reduction of lung fibrosis 

extent (Takahashi et al., 2001; Dong and Ma, 2017), which support the potential benefit for the 

targeting of SPP1 to slow or stop CIPF progression and to act at the same time on FN1 amount.  

The scRNA-seq as a tool for unbiased cellular approach, although strongly efficient, is yet in 

development and currently, the development of new software based on gene expression profile such as 

Niche Net (Browaeys, Saelens and Saeys, 2020) allows to investigate cell-cell interactions and to have 

a functional understanding of cell–cell communication. The use of this new software would be helpful 

to investigate the links between pro-fibrotic Ma/Mo populations and other cells and to provide a better 

understanding of the role of pro-fibrotic Ma/Mo populations in CIPF pathogenesis.  

Finally, in our scRNA-seq analysis, we only focused on BALF Ma/Mo which represent a part 

but not all Ma/Mo present in the lungs and that might be involved in CIPF pathogenesis. Indeed, in 

addition to the monocytes recruited into the lung which can be found in the interstitium, specific 

clusters of macrophages, called interstitial macrophages (IMs), ideally positioned in the interstitium 

and especially exerting anti-inflammatory functions have also been described (Liegeois et al., 2018; 

Schyns et al., 2019). Modifications of IMs have been found in mice with induced hypoxemia. Indeed, 

the number of IMs was shown to transiently increase and their transcriptome was showed to change 

towards expression of anti-inflammatory genes, in response to the low blood oxygen level (Pugliese et 

al., 2017). Accordingly, this increase in immunoregulatory activity might play a role in CIPF dogs 

with known hyoxemia. In mice with bleomycin-induced and radiation-induced lung fibrosis, IMs were 

also shown to aquire pro-fibrotic signature, potentially at the origin of lung fibrosis (Shi et al., 2021). 

However, recently, a protective role of IMs was also described in early development of bleomycin-

induced IPF, in which the depletion of IMs induced higher collagen deposition and inflammatory cells 

recruitement (Chakarov et al., 2019). Althought the role of IMs as protective or causative agent in 
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lung fibrosis needs to be confirmed, such studies showed that investigating Ma/Mo clusters in the 

interstitial compartment appears interesting to better understand all the mechanisms driven by Ma/Mo 

in the disease pathogenesis. Moreover, pro-fibrotic epithelial and fibroblastic clusters also localised 

into the lung tissue have been described in IPF scRNA-seq studies (Nemeth, Schundner and Frick, 

2020). Establishing the whole lung cell atlas in dogs will be the next step to identify modifications 

induced by CIPF in an unbiased way and in a more global vision in the entire lung tissue including 

those IM, epithelial and fibroblastic cells.  

Limitations 

This work has several limitations. The principal limitation is the difficulty to recruit large 

numbers of well-phenotyped WHWTs affected with CIPF. Indeed, CIPF remains a rare disease easily 

confounded by owners and veterinarians with ageing and other cardiopulmonary diseases, respectively 

(Clercx, Fastrès and Roels, 2018; Laurila and Rajamäki, 2020). Moreover, diagnosis requires 

performance of several complementary examinations including thoracic HRCT and even if disease 

confirmation can only be obtained through lung tissue histopathological examination, lung biopsies 

are only performed after the animal death as the balance between risk and benefit is too high (Clercx, 

Fastrès and Roels, 2018; Laurila and Rajamäki, 2020). Therefore, despite large communication about 

the WHWT project launched at the veterinary clinic of Liège University, we were only able to recruit 

17 WHWTs suspected to have CIPF based on thoracic HRCT and followed every 6 months during the 

course of this work. Among them 10 died during the study period but lung tissue was collected in only 

6 of these dogs in which CIPF was confirmed by histology. Six healthy control WHWTs were also 

recruited but only 2 of them have had a follow-up every year. The limited number of dogs has a great 

impact on results, especially with the use of sequencing technologies that provide huge amount of 

data. Indeed, the amount of data has an impact on statistical power of analyses and prevents the 

detection of statistically significant small effects (Desquilbet et al., 2015).  

Another limitation inherent in dog studies is the lack of specifically-design research tools and 

materials for dogs. Poor annotation of canine genome databases limits genome databases-based 

results. For example, in scRNA-seq studies, a threshold of 30% of reads mapped confidently to the 

transcriptome is required which was not reached in our studies (10X Genomics, 2020). Although it did 

not prevent us from having consistent results, it probably masked information and prevented us from 

optimizing the use of this technique. In dogs also, there is a lack of well-described cell markers. 

Usually, cell population markers are derived from human or rodent studies and are not always adapted 

to canine cell populations as noted in our first study on scRNA-seq. Moreover, classical validations of 

scRNA-seq studies usually based on flow cytometry or immunohistochemistry methods are limited by 

the lack of antibodies able to bind reliably to canine cells. 
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Other limitations linked to the use of the 16S rDNA amplicon sequencing and the scRNA-seq 

techniques have been addressed in details in the introduction and have to be kept in mind when 

interpreting data obtained by such methods. More specifically, the study of the LM, because of its low 

bacterial load, requires strict controls to avoid samples contamination at each analysis steps (Salter et 

al., 2014; Marsh et al., 2018). Accordingly, in all of our studies, PCSs were obtained from each dog 

and processed alongside the samples. In all of them, the post-PCR quality control did not identify PCR 

products > 1 ng/µL, necessary to have reliable sequencing analysis results (Taminiau and Daube, 

unpublished data). Moreover, when bacterial loads were compared between PCSs and samples, a 

significant 2 log fold change difference was found in all of our studies. Positive and negative controls 

were also used for the sequencing step to validate each run. The absence of a standardized technique to 

explore LM also prevents good comparison between studies that remain sparse in dogs. The use of the 

scRNA-seq also has limitations. First, it requires fresh samples to avoid RNA contamination from 

dead or broken cells (Zheng et al., 2017; Salomon et al., 2019). Doublets can also result in 

misinterpretation of the results (Chen, Ning and Shi, 2019). Accordingly, we analysed BALF samples 

within one hour after collection to limit the presence of broken or dead cells in our samples and a 

percentage of viability above 80% was considered as acceptable. As detection and withdrawal of 

possible broken or dead cells and doublets is crucial, cells containing less than 100 genes (dead or 

broken cells) or more than 2500 genes (doublets) were excluded from our analyses. We also screened 

our samples for mitochondrial genes to search for dead or broken cells without identification of such 

genes. Finally, poorly expressed RNA might not be captured by the scRNA-seq technique (See et al., 

2018; Chen, Ning and Shi, 2019), although we reach a plateau of detected genes in the majority of our 

sample on the saturation curve by having a sequencing depth stated at 50,000 reads. Rare cells 

populations might also not be captured (See et al., 2018; Chen, Ning and Shi, 2019), and eosinophils 

doesn’t seem to be recruited by the scRNA-seq technique. 

Conclusion 

To conclude, this work increases knowledge on CIPF pathogenesis by focusing on the 

potential involvement of the LM and BALF macrophages in the disease.  

We established that the LM in healthy dogs is composed by 4 major phyla, the Proteobacteria, 

the Actinobacteria, the Firmicutes and the Bacteroidetes and includes at least Cutibacterium, 

Streptococcus, Acinetobacter and Pseudomonas genera. We also showed that the LM is relatively 

stable in healthy adult dogs and is mainly influenced by the living conditions of the dogs, although the 

breed also has an impact. We showed that the 16S rDNA amplicon sequencing is a reliable technique 

to identify bacteria in lung infectious diseases, and that the dysbiosis associated with acute lung 

conditions is characterized by an increase in bacterial burden and a decrease in richness and α-

diversity, with the domination of one or two bacteria. We also showed that a treatment with 
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antimicrobials drugs induces LM alterations and that a wash-out period of at least 2 weeks should be 

followed before sampling to minimize antimicrobial drug-induced dysbiosis. Unfortunately, we were 

not able to identify significant specific LM alterations associated with CIPF but we reported a specific 

LM in dogs of the WHWT breed which could be associated with the predisposition to the disease.  

After validation of the use of the scRNA-seq in BALF from healthy dogs, a technique never 

used in dogs before, we were able to identify in healthy and CIPF WHWTs 2 Ma/Mo clusters, further 

characterized as monocytes and monocyte-derived macrophages, enriched in pro-fibrotic genes 

compared with other Ma/Mo clusters. Although those two clusters were present in healthy WHWTs, 

monocytes were in lesser cell proportion compared to CIPF dogs and differences in gene expression 

including notably an enrichment in pro-fibrotic genes was found in monocyte-derived macrophages in 

CIPF compared with healthy WHWTs. Those results are in favour of a role of macrophages in CIPF 

development and perpetuation. However, more studies are required to validate those results and 

identify potential therapeutic targets in link with macrophages clusters or their expression products.  

Even if CIPF remains complex and still poorly understood, this work offers promising 

perspectives for future projects with always the objectives to improve disease detection, follow-up, 

understanding, and treatment.   
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